Cargando…

A large-scale optical microscopy image dataset of potato tuber for deep learning based plant cell assessment

We present a new large-scale three-fold annotated microscopy image dataset, aiming to advance the plant cell biology research by exploring different cell microstructures including cell size and shape, cell wall thickness, intercellular space, etc. in deep learning (DL) framework. This dataset includ...

Descripción completa

Detalles Bibliográficos
Autores principales: Biswas, Sumona, Barma, Shovan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591917/
https://www.ncbi.nlm.nih.gov/pubmed/33110087
http://dx.doi.org/10.1038/s41597-020-00706-9
Descripción
Sumario:We present a new large-scale three-fold annotated microscopy image dataset, aiming to advance the plant cell biology research by exploring different cell microstructures including cell size and shape, cell wall thickness, intercellular space, etc. in deep learning (DL) framework. This dataset includes 9,811 unstained and 6,127 stained (safranin-o, toluidine blue-o, and lugol’s-iodine) images with three-fold annotation including physical, morphological, and tissue grading based on weight, different section area, and tissue zone respectively. In addition, we prepared ground truth segmentation labels for three different tuber weights. We have validated the pertinence of annotations by performing multi-label cell classification, employing convolutional neural network (CNN), VGG16, for unstained and stained images. The accuracy has been achieved up to 0.94, while, F2-score reaches to 0.92. Furthermore, the ground truth labels have been verified by semantic segmentation algorithm using UNet architecture which presents the mean intersection of union up to 0.70. Hence, the overall results show that the data are very much efficient and could enrich the domain of microscopy plant cell analysis for DL-framework.