Cargando…

The role of nicotinic receptors in SARS-CoV-2 receptor ACE2 expression in intestinal epithelia

BACKGROUND: Recent evidence demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) propagates in intestinal epithelial cells expressing Angiotensin-Converting Enzyme 2 (ACE2), implying that these cells represent an important entry site for the viral infection. Nicotinic recep...

Descripción completa

Detalles Bibliográficos
Autores principales: ten Hove, Anne S., Brinkman, David J., Li Yim, Andrew Y. F., Verseijden, Caroline, Hakvoort, Theo B. M., Admiraal, Iris, Welting, Olaf, van Hamersveld, Patricia H. P., Sinniger, Valérie, Bonaz, Bruno, Luyer, Misha D., de Jonge, Wouter J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592135/
https://www.ncbi.nlm.nih.gov/pubmed/33123616
http://dx.doi.org/10.1186/s42234-020-00057-1
Descripción
Sumario:BACKGROUND: Recent evidence demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) propagates in intestinal epithelial cells expressing Angiotensin-Converting Enzyme 2 (ACE2), implying that these cells represent an important entry site for the viral infection. Nicotinic receptors (nAChRs) have been put forward as potential regulators of inflammation and of ACE2 expression. As vagus nerve stimulation (VNS) activates nAChRs, we aimed to investigate whether VNS can be instrumental in affecting intestinal epithelial ACE2 expression. METHODS: By using publicly available datasets we qualified epithelial ACE2 expression in human intestine, and assessed gene co-expression of ACE2 and SARS-CoV-2 priming Transmembrane Serine Protease 2 (TMPRSS2) with nAChRs in intestinal epithelial cells. Next, we investigated mouse and human ACE2 expression in intestinal tissues after chronic VNS via implanted devices. RESULTS: We show co-expression of ACE2 and TMPRSS2 with nAChRs and α7 nAChR in particular in intestinal stem cells, goblet cells, and enterocytes. However, VNS did not affect ACE2 expression in murine or human intestinal tissue, albeit in colitis setting. CONCLUSIONS: ACE2 and TMPRSS2 are specifically expressed in epithelial cells of human intestine, and both are co-expressed with nAChRs. However, no evidence for regulation of ACE2 expression through VNS could be found. Hence, a therapeutic value of VNS with respect to SARS-CoV-2 infection risk through ACE2 receptor modulation in intestinal epithelia could not be established.