Cargando…
Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma
Ependymoma is the third most common brain tumor in children, with well-described molecular characterization but poorly understood underlying germline risk factors. To investigate whether genetic predisposition to longer telomere length influences ependymoma risk, we utilized case–control data from t...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592366/ https://www.ncbi.nlm.nih.gov/pubmed/33115534 http://dx.doi.org/10.1186/s40478-020-01038-w |
Sumario: | Ependymoma is the third most common brain tumor in children, with well-described molecular characterization but poorly understood underlying germline risk factors. To investigate whether genetic predisposition to longer telomere length influences ependymoma risk, we utilized case–control data from three studies: a population-based pediatric and adolescent ependymoma case–control sample from California (153 cases, 696 controls), a hospital-based pediatric posterior fossa type A (EPN-PF-A) ependymoma case–control study from Toronto’s Hospital for Sick Children and the Children’s Hospital of Philadelphia (83 cases, 332 controls), and a multicenter adult-onset ependymoma case–control dataset nested within the Glioma International Case-Control Consortium (GICC) (103 cases, 3287 controls). In the California case–control sample, a polygenic score for longer telomere length was significantly associated with increased risk of ependymoma diagnosed at ages 12–19 (P = 4.0 × 10(−3)), but not with ependymoma in children under 12 years of age (P = 0.94). Mendelian randomization supported this observation, identifying a significant association between genetic predisposition to longer telomere length and increased risk of adolescent-onset ependymoma (OR(PRS) = 1.67; 95% CI 1.18–2.37; P = 3.97 × 10(−3)) and adult-onset ependymoma (P(MR-Egger) = 0.042), but not with risk of ependymoma diagnosed before age 12 (OR = 1.12; 95% CI 0.94–1.34; P = 0.21), nor with EPN-PF-A (P(MR-Egger) = 0.59). These findings complement emerging literature suggesting that augmented telomere maintenance is important in ependymoma pathogenesis and progression, and that longer telomere length is a risk factor for diverse nervous system malignancies. |
---|