Cargando…
Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling
Radiation outcomes prediction (ROP) plays an important role in personalized prescription and adaptive radiotherapy. A clinical decision may not only depend on an accurate radiation outcomes’ prediction, but also needs to be made based on an informed understanding of the relationship among patients’...
Autores principales: | Luo, Yi, Tseng, Huan-Hsin, Cui, Sunan, Wei, Lise, Ten Haken, Randall K., El Naqa, Issam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592485/ https://www.ncbi.nlm.nih.gov/pubmed/33178948 http://dx.doi.org/10.1259/bjro.20190021 |
Ejemplares similares
-
The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy
por: Tseng, Huan-Hsin, et al.
Publicado: (2018) -
Current status and future developments in predicting outcomes in radiation oncology
por: Niraula, Dipesh, et al.
Publicado: (2022) -
Interpretable artificial intelligence in radiology and radiation oncology
por: Cui, Sunan, et al.
Publicado: (2023) -
Machine learning in radiation oncology: theory and applications
por: El Naqa, Issam, et al.
Publicado: (2015) -
Editorial: Machine Learning With Radiation Oncology Big Data
por: Deng, Jun, et al.
Publicado: (2018)