Cargando…
Structure–activity relationship-based chemical classification of highly imbalanced Tox21 datasets
The specificity of toxicant-target biomolecule interactions lends to the very imbalanced nature of many toxicity datasets, causing poor performance in Structure–Activity Relationship (SAR)-based chemical classification. Undersampling and oversampling are representative techniques for handling such a...
Autores principales: | Idakwo, Gabriel, Thangapandian, Sundar, Luttrell, Joseph, Li, Yan, Wang, Nan, Zhou, Zhaoxian, Hong, Huixiao, Yang, Bei, Zhang, Chaoyang, Gong, Ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592558/ https://www.ncbi.nlm.nih.gov/pubmed/33372637 http://dx.doi.org/10.1186/s13321-020-00468-x |
Ejemplares similares
-
Deep Learning-Based Structure-Activity Relationship Modeling for Multi-Category Toxicity Classification: A Case Study of 10K Tox21 Chemicals With High-Throughput Cell-Based Androgen Receptor Bioassay Data
por: Idakwo, Gabriel, et al.
Publicado: (2019) -
Predictive Capability of QSAR Models Based on the CompTox Zebrafish Embryo Assays: An Imbalanced Classification Problem
por: Lovrić, Mario, et al.
Publicado: (2021) -
Deep learning architectures for multi-label classification of intelligent health risk prediction
por: Maxwell, Andrew, et al.
Publicado: (2017) -
Profiling the Tox21 Chemical Collection for Acetylcholinesterase Inhibition
por: Li, Shuaizhang, et al.
Publicado: (2021) -
Overlap-Based Undersampling Method for Classification of Imbalanced Medical Datasets
por: Vuttipittayamongkol, Pattaramon, et al.
Publicado: (2020)