Cargando…
Technical note: Atlas‐based Auto‐segmentation of masticatory muscles for head and neck cancer radiotherapy
PURPOSE: The study aimed to use quantitative geometric and dosimetric metrics to assess the accuracy of atlas‐based auto‐segmentation of masticatory muscles (MMs) compared to manual drawn contours for head and neck cancer (HNC) radiotherapy (RT). MATERIALS AND METHODS: Fifty‐eight patients with HNC...
Autores principales: | Zhang, Xiangguo, Chen, Haihui, Chen, Wen, Dyer, Brandon A., Chen, Quan, Benedict, Stanley H., Rao, Shyam, Rong, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592960/ https://www.ncbi.nlm.nih.gov/pubmed/32841492 http://dx.doi.org/10.1002/acm2.13008 |
Ejemplares similares
-
Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images
por: Chen, Wen, et al.
Publicado: (2020) -
Comparison of atlas-based auto-segmentation accuracy for radiotherapy in prostate cancer
por: Aoyama, Takahiro, et al.
Publicado: (2021) -
Technical Note: Volumetric computed tomography for radiotherapy simulation and treatment planning
por: Young, Heather M., et al.
Publicado: (2021) -
Technical note: Institutional solution of clinical cine MRI for tumor motion evaluation in radiotherapy
por: Kim, Taeho, et al.
Publicado: (2022) -
Clinical Enhancement in AI-Based Post-processed Fast-Scan Low-Dose CBCT for Head and Neck Adaptive Radiotherapy
por: Chen, Wen, et al.
Publicado: (2021)