Cargando…
Deep learning and level set approach for liver and tumor segmentation from CT scans
PURPOSE: Segmentation of liver organ and tumors from computed tomography (CT) scans is an important task for hepatic surgical planning. Manual segmentation of liver and tumors is tedious, time‐consuming, and biased to the clinician experience. Therefore, automatic segmentation of liver and tumors is...
Autor principal: | Alirr, Omar Ibrahim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592966/ https://www.ncbi.nlm.nih.gov/pubmed/33113290 http://dx.doi.org/10.1002/acm2.13003 |
Ejemplares similares
-
Hepatic vessels segmentation using deep learning and preprocessing enhancement
por: Alirr, Omar Ibrahim, et al.
Publicado: (2023) -
Automatic deep learning system for COVID-19 infection quantification in chest CT
por: Alirr, Omar Ibrahim
Publicado: (2021) -
Fully automatic tumor segmentation of breast ultrasound images with deep learning
por: Zhang, Shuai, et al.
Publicado: (2022) -
Automatic segmentation of rectal tumor on diffusion‐weighted images by deep learning with U‐Net
por: Zhu, Hai‐Tao, et al.
Publicado: (2021) -
Lumbar spine segmentation method based on deep learning
por: Lu, Hongjiang, et al.
Publicado: (2023)