Cargando…
Automatic segmentation and applicator reconstruction for CT‐based brachytherapy of cervical cancer using 3D convolutional neural networks
In this study, we present deep learning‐based approaches to automatic segmentation and applicator reconstruction with high accuracy and efficiency in the planning computed tomography (CT) for cervical cancer brachytherapy (BT). A novel three‐dimensional (3D) convolutional neural network (CNN) archit...
Autores principales: | Zhang, Daguang, Yang, Zhiyong, Jiang, Shan, Zhou, Zeyang, Meng, Maobin, Wang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7592978/ https://www.ncbi.nlm.nih.gov/pubmed/32991783 http://dx.doi.org/10.1002/acm2.13024 |
Ejemplares similares
-
Automatic needle detection using improved random sample consensus in CT image‐guided lung interstitial brachytherapy
por: Zheng, Yongnan, et al.
Publicado: (2021) -
Deformable registration of chest CT images using a 3D convolutional neural network based on unsupervised learning
por: Zheng, Yongnan, et al.
Publicado: (2021) -
Deep convolutional neural networks for automatic segmentation of thoracic organs‐at‐risk in radiation oncology – use of non‐domain transfer learning
por: Vu, Charles C., et al.
Publicado: (2020) -
Oral Gastrografin Facilitates Delineation of Intestinal Tracts in CT-Based Brachytherapy for Uterine Cervical Cancer
por: Irie, Daisuke, et al.
Publicado: (2020) -
Fully automated segmentation of clinical target volume in cervical cancer from magnetic resonance imaging with convolutional neural network
por: Zabihollahy, Fatemeh, et al.
Publicado: (2022)