Cargando…

Predictive ability of a process‐based versus a correlative species distribution model

Species distribution modeling is a widely used tool in many branches of ecology and evolution. Evaluations of the transferability of species distribution models—their ability to predict the distribution of species in independent data domains—are, however, rare. In this study, we contrast the transfe...

Descripción completa

Detalles Bibliográficos
Autores principales: Higgins, Steven I., Larcombe, Matthew J., Beeton, Nicholas J., Conradi, Timo, Nottebrock, Henning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593166/
https://www.ncbi.nlm.nih.gov/pubmed/33144947
http://dx.doi.org/10.1002/ece3.6712
Descripción
Sumario:Species distribution modeling is a widely used tool in many branches of ecology and evolution. Evaluations of the transferability of species distribution models—their ability to predict the distribution of species in independent data domains—are, however, rare. In this study, we contrast the transferability of a process‐based and a correlative species distribution model. Our case study uses 664 Australian eucalypt and acacia species. We estimate models for these species using data from their native Australia and then assess whether these models can predict the adventive range of these species. We find that the correlative model—MaxEnt—has a superior ability to describe the data in the training data domain (Australia) and that the process‐based model—TTR‐SDM—has a superior ability to predict the distribution of the study species outside of Australia. The implication of this analysis, that process‐based models may be more appropriate than correlative models when making projections outside of the domain of the training data, needs to be tested in other case studies.