Cargando…
SDMtune: An R package to tune and evaluate species distribution models
Balancing model complexity is a key challenge of modern computational ecology, particularly so since the spread of machine learning algorithms. Species distribution models are often implemented using a wide variety of machine learning algorithms that can be fine‐tuned to achieve the best model predi...
Autores principales: | Vignali, Sergio, Barras, Arnaud G., Arlettaz, Raphaël, Braunisch, Veronika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593178/ https://www.ncbi.nlm.nih.gov/pubmed/33144979 http://dx.doi.org/10.1002/ece3.6786 |
Ejemplares similares
-
A predictive flight-altitude model for avoiding future conflicts between an emblematic raptor and wind energy development in the Swiss Alps
por: Vignali, Sergio, et al.
Publicado: (2022) -
Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling
por: Braunisch, Veronika, et al.
Publicado: (2016) -
Temperate Mountain Forest Biodiversity under Climate Change: Compensating Negative Effects by Increasing Structural Complexity
por: Braunisch, Veronika, et al.
Publicado: (2014) -
Joint species distribution modelling with the r‐package Hmsc
por: Tikhonov, Gleb, et al.
Publicado: (2020) -
The MIAmaxent R package: Variable transformation and model selection for species distribution models
por: Vollering, Julien, et al.
Publicado: (2019)