Cargando…
Feral populations of Brassica oleracea along Atlantic coasts in western Europe
There has been growing emphasis on the role that crop wild relatives might play in supporting highly selected agriculturally valuable species in the face of climate change. In species that were domesticated many thousands of years ago, distinguishing wild populations from escaped feral forms can be...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593181/ https://www.ncbi.nlm.nih.gov/pubmed/33145003 http://dx.doi.org/10.1002/ece3.6821 |
_version_ | 1783601327047180288 |
---|---|
author | Mittell, Elizabeth A. Cobbold, Christina A. Ijaz, Umer Zeeshan Kilbride, Elizabeth A. Moore, Karen A. Mable, Barbara K. |
author_facet | Mittell, Elizabeth A. Cobbold, Christina A. Ijaz, Umer Zeeshan Kilbride, Elizabeth A. Moore, Karen A. Mable, Barbara K. |
author_sort | Mittell, Elizabeth A. |
collection | PubMed |
description | There has been growing emphasis on the role that crop wild relatives might play in supporting highly selected agriculturally valuable species in the face of climate change. In species that were domesticated many thousands of years ago, distinguishing wild populations from escaped feral forms can be challenging, but reintroducing variation from either source could supplement current cultivated forms. For economically important cabbages (Brassicaceae: Brassica oleracea), “wild” populations occur throughout Europe but little is known about their genetic variation or potential as resources for breeding more resilient crop varieties. The main aim of this study was to characterize the population structure of geographically isolated wild cabbage populations along the coasts of the UK and Spain, including the Atlantic range edges. Double‐digest restriction‐site‐associated DNA sequencing was used to sample individual cabbage genomes, assess the similarity of plants from 20 populations, and explore environment–genotype associations across varying climatic conditions. Interestingly, there were no indications of isolation by distance; several geographically close populations were genetically more distinct from each other than to distant populations. Furthermore, several distant populations shared genetic ancestry, which could indicate that they were established by escapees of similar source cultivars. However, there were signals of local adaptation to different environments, including a possible relationship between genetic diversity and soil pH. Overall, these results highlight wild cabbages in the Atlantic region as an important genetic resource worthy of further research into their relationship with existing crop varieties. |
format | Online Article Text |
id | pubmed-7593181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75931812020-11-02 Feral populations of Brassica oleracea along Atlantic coasts in western Europe Mittell, Elizabeth A. Cobbold, Christina A. Ijaz, Umer Zeeshan Kilbride, Elizabeth A. Moore, Karen A. Mable, Barbara K. Ecol Evol Original Research There has been growing emphasis on the role that crop wild relatives might play in supporting highly selected agriculturally valuable species in the face of climate change. In species that were domesticated many thousands of years ago, distinguishing wild populations from escaped feral forms can be challenging, but reintroducing variation from either source could supplement current cultivated forms. For economically important cabbages (Brassicaceae: Brassica oleracea), “wild” populations occur throughout Europe but little is known about their genetic variation or potential as resources for breeding more resilient crop varieties. The main aim of this study was to characterize the population structure of geographically isolated wild cabbage populations along the coasts of the UK and Spain, including the Atlantic range edges. Double‐digest restriction‐site‐associated DNA sequencing was used to sample individual cabbage genomes, assess the similarity of plants from 20 populations, and explore environment–genotype associations across varying climatic conditions. Interestingly, there were no indications of isolation by distance; several geographically close populations were genetically more distinct from each other than to distant populations. Furthermore, several distant populations shared genetic ancestry, which could indicate that they were established by escapees of similar source cultivars. However, there were signals of local adaptation to different environments, including a possible relationship between genetic diversity and soil pH. Overall, these results highlight wild cabbages in the Atlantic region as an important genetic resource worthy of further research into their relationship with existing crop varieties. John Wiley and Sons Inc. 2020-09-24 /pmc/articles/PMC7593181/ /pubmed/33145003 http://dx.doi.org/10.1002/ece3.6821 Text en © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Mittell, Elizabeth A. Cobbold, Christina A. Ijaz, Umer Zeeshan Kilbride, Elizabeth A. Moore, Karen A. Mable, Barbara K. Feral populations of Brassica oleracea along Atlantic coasts in western Europe |
title | Feral populations of Brassica oleracea along Atlantic coasts in western Europe |
title_full | Feral populations of Brassica oleracea along Atlantic coasts in western Europe |
title_fullStr | Feral populations of Brassica oleracea along Atlantic coasts in western Europe |
title_full_unstemmed | Feral populations of Brassica oleracea along Atlantic coasts in western Europe |
title_short | Feral populations of Brassica oleracea along Atlantic coasts in western Europe |
title_sort | feral populations of brassica oleracea along atlantic coasts in western europe |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593181/ https://www.ncbi.nlm.nih.gov/pubmed/33145003 http://dx.doi.org/10.1002/ece3.6821 |
work_keys_str_mv | AT mittellelizabetha feralpopulationsofbrassicaoleraceaalongatlanticcoastsinwesterneurope AT cobboldchristinaa feralpopulationsofbrassicaoleraceaalongatlanticcoastsinwesterneurope AT ijazumerzeeshan feralpopulationsofbrassicaoleraceaalongatlanticcoastsinwesterneurope AT kilbrideelizabetha feralpopulationsofbrassicaoleraceaalongatlanticcoastsinwesterneurope AT moorekarena feralpopulationsofbrassicaoleraceaalongatlanticcoastsinwesterneurope AT mablebarbarak feralpopulationsofbrassicaoleraceaalongatlanticcoastsinwesterneurope |