Cargando…
Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits
High-frequency firing activity can be induced either naturally in a healthy brain as a result of the processing of sensory stimuli or as an uncontrolled synchronous activity characterizing epileptic seizures. As part of this work, we investigate how logic circuits that are engineered in neurons can...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593240/ https://www.ncbi.nlm.nih.gov/pubmed/33178001 http://dx.doi.org/10.3389/fncom.2020.556628 |
_version_ | 1783601340753117184 |
---|---|
author | Adonias, Geoflly L. Siljak, Harun Barros, Michael Taynnan Marchetti, Nicola White, Mark Balasubramaniam, Sasitharan |
author_facet | Adonias, Geoflly L. Siljak, Harun Barros, Michael Taynnan Marchetti, Nicola White, Mark Balasubramaniam, Sasitharan |
author_sort | Adonias, Geoflly L. |
collection | PubMed |
description | High-frequency firing activity can be induced either naturally in a healthy brain as a result of the processing of sensory stimuli or as an uncontrolled synchronous activity characterizing epileptic seizures. As part of this work, we investigate how logic circuits that are engineered in neurons can be used to design spike filters, attenuating high-frequency activity in a neuronal network that can be used to minimize the effects of neurodegenerative disorders such as epilepsy. We propose a reconfigurable filter design built from small neuronal networks that behave as digital logic circuits. We developed a mathematical framework to obtain a transfer function derived from a linearization process of the Hodgkin-Huxley model. Our results suggest that individual gates working as the output of the logic circuits can be used as a reconfigurable filtering technique. Also, as part of the analysis, the analytical model showed similar levels of attenuation in the frequency domain when compared to computational simulations by fine-tuning the synaptic weight. The proposed approach can potentially lead to precise and tunable treatments for neurological conditions that are inspired by communication theory. |
format | Online Article Text |
id | pubmed-7593240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75932402020-11-10 Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits Adonias, Geoflly L. Siljak, Harun Barros, Michael Taynnan Marchetti, Nicola White, Mark Balasubramaniam, Sasitharan Front Comput Neurosci Neuroscience High-frequency firing activity can be induced either naturally in a healthy brain as a result of the processing of sensory stimuli or as an uncontrolled synchronous activity characterizing epileptic seizures. As part of this work, we investigate how logic circuits that are engineered in neurons can be used to design spike filters, attenuating high-frequency activity in a neuronal network that can be used to minimize the effects of neurodegenerative disorders such as epilepsy. We propose a reconfigurable filter design built from small neuronal networks that behave as digital logic circuits. We developed a mathematical framework to obtain a transfer function derived from a linearization process of the Hodgkin-Huxley model. Our results suggest that individual gates working as the output of the logic circuits can be used as a reconfigurable filtering technique. Also, as part of the analysis, the analytical model showed similar levels of attenuation in the frequency domain when compared to computational simulations by fine-tuning the synaptic weight. The proposed approach can potentially lead to precise and tunable treatments for neurological conditions that are inspired by communication theory. Frontiers Media S.A. 2020-10-15 /pmc/articles/PMC7593240/ /pubmed/33178001 http://dx.doi.org/10.3389/fncom.2020.556628 Text en Copyright © 2020 Adonias, Siljak, Barros, Marchetti, White and Balasubramaniam. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Adonias, Geoflly L. Siljak, Harun Barros, Michael Taynnan Marchetti, Nicola White, Mark Balasubramaniam, Sasitharan Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits |
title | Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits |
title_full | Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits |
title_fullStr | Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits |
title_full_unstemmed | Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits |
title_short | Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits |
title_sort | reconfigurable filtering of neuro-spike communications using synthetically engineered logic circuits |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593240/ https://www.ncbi.nlm.nih.gov/pubmed/33178001 http://dx.doi.org/10.3389/fncom.2020.556628 |
work_keys_str_mv | AT adoniasgeofllyl reconfigurablefilteringofneurospikecommunicationsusingsyntheticallyengineeredlogiccircuits AT siljakharun reconfigurablefilteringofneurospikecommunicationsusingsyntheticallyengineeredlogiccircuits AT barrosmichaeltaynnan reconfigurablefilteringofneurospikecommunicationsusingsyntheticallyengineeredlogiccircuits AT marchettinicola reconfigurablefilteringofneurospikecommunicationsusingsyntheticallyengineeredlogiccircuits AT whitemark reconfigurablefilteringofneurospikecommunicationsusingsyntheticallyengineeredlogiccircuits AT balasubramaniamsasitharan reconfigurablefilteringofneurospikecommunicationsusingsyntheticallyengineeredlogiccircuits |