Cargando…
Deep learning for glioblastoma segmentation using preoperative magnetic resonance imaging identifies volumetric features associated with survival
BACKGROUND: Measurement of volumetric features is challenging in glioblastoma. We investigate whether volumetric features derived from preoperative MRI using a convolutional neural network–assisted segmentation is correlated with survival. METHODS: Preoperative MRI of 120 patients were scored using...
Autores principales: | Wan, Yizhou, Rahmat, Roushanak, Price, Stephen J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593295/ https://www.ncbi.nlm.nih.gov/pubmed/32662042 http://dx.doi.org/10.1007/s00701-020-04483-7 |
Ejemplares similares
-
Effect of valproic acid on survival in glioblastoma: A prospective single-arm study
por: Valiyaveettil, Deepthi, et al.
Publicado: (2018) -
Volumetric growth rates of meningioma and its correlation with histological diagnosis and clinical outcome: a systematic review
por: Fountain, Daniel M., et al.
Publicado: (2017) -
Primary versus recurrent surgery for glioblastoma—a prospective cohort study
por: Rubin, Maja Chava, et al.
Publicado: (2020) -
Are patients open to elective re-sampling of their glioblastoma? A new way of assessing treatment innovations
por: Mir, Taskia, et al.
Publicado: (2014) -
Provocation and prediction of visual peripersonal neglect-like symptoms in preoperative planning and during awake brain surgery
por: Tamás, Viktória, et al.
Publicado: (2021)