Cargando…
DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA
A subset of individuals with type 1 diabetes will develop diabetic kidney disease (DKD). DKD is heritable and large-scale genome-wide association studies have begun to identify genetic factors that influence DKD. Complementary to genetic factors, we know that a person’s epigenetic profile is also al...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593403/ https://www.ncbi.nlm.nih.gov/pubmed/33178681 http://dx.doi.org/10.3389/fcell.2020.561907 |
_version_ | 1783601375304744960 |
---|---|
author | Smyth, Laura J. Patterson, Christopher C. Swan, Elizabeth J. Maxwell, Alexander P. McKnight, Amy Jayne |
author_facet | Smyth, Laura J. Patterson, Christopher C. Swan, Elizabeth J. Maxwell, Alexander P. McKnight, Amy Jayne |
author_sort | Smyth, Laura J. |
collection | PubMed |
description | A subset of individuals with type 1 diabetes will develop diabetic kidney disease (DKD). DKD is heritable and large-scale genome-wide association studies have begun to identify genetic factors that influence DKD. Complementary to genetic factors, we know that a person’s epigenetic profile is also altered with DKD. This study reports analysis of DNA methylation, a major epigenetic feature, evaluating methylome-wide loci for association with DKD. Unique features (n = 485,577; 482,421 CpG probes) were evaluated in blood-derived DNA from carefully phenotyped White European individuals diagnosed with type 1 diabetes with (cases) or without (controls) DKD (n = 677 samples). Explicitly, 150 cases were compared to 100 controls using the 450K array, with subsequent analysis using data previously generated for a further 96 cases and 96 controls on the 27K array, and de novo methylation data generated for replication in 139 cases and 96 controls. Following stringent quality control, raw data were quantile normalized and beta values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls; resultant P-values for array-based data were adjusted for multiple testing. Genes with significantly increased (hypermethylated) and/or decreased (hypomethylated) levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways. Twenty-two loci demonstrated statistically significant fold changes associated with DKD and additional support for these associated loci was sought using independent samples derived from patients recruited with similar inclusion criteria. Markers associated with CCNL1 and ZNF187 genes are supported as differentially regulated loci (P < 10(–8)), with evidence also presented for AFF3, which has been identified from a meta-analysis and subsequent replication of genome-wide association studies. Further supporting evidence for differential gene expression in CCNL1 and ZNF187 is presented from kidney biopsy and blood-derived RNA in people with and without kidney disease from NephroSeq. Evidence confirming that methylation sites influence the development of DKD may aid risk prediction tools and stimulate research to identify epigenomic therapies which might be clinically useful for this disease. |
format | Online Article Text |
id | pubmed-7593403 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75934032020-11-10 DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA Smyth, Laura J. Patterson, Christopher C. Swan, Elizabeth J. Maxwell, Alexander P. McKnight, Amy Jayne Front Cell Dev Biol Cell and Developmental Biology A subset of individuals with type 1 diabetes will develop diabetic kidney disease (DKD). DKD is heritable and large-scale genome-wide association studies have begun to identify genetic factors that influence DKD. Complementary to genetic factors, we know that a person’s epigenetic profile is also altered with DKD. This study reports analysis of DNA methylation, a major epigenetic feature, evaluating methylome-wide loci for association with DKD. Unique features (n = 485,577; 482,421 CpG probes) were evaluated in blood-derived DNA from carefully phenotyped White European individuals diagnosed with type 1 diabetes with (cases) or without (controls) DKD (n = 677 samples). Explicitly, 150 cases were compared to 100 controls using the 450K array, with subsequent analysis using data previously generated for a further 96 cases and 96 controls on the 27K array, and de novo methylation data generated for replication in 139 cases and 96 controls. Following stringent quality control, raw data were quantile normalized and beta values calculated to reflect the methylation status at each site. The difference in methylation status was evaluated between cases and controls; resultant P-values for array-based data were adjusted for multiple testing. Genes with significantly increased (hypermethylated) and/or decreased (hypomethylated) levels of DNA methylation were considered for biological relevance by functional enrichment analysis using KEGG pathways. Twenty-two loci demonstrated statistically significant fold changes associated with DKD and additional support for these associated loci was sought using independent samples derived from patients recruited with similar inclusion criteria. Markers associated with CCNL1 and ZNF187 genes are supported as differentially regulated loci (P < 10(–8)), with evidence also presented for AFF3, which has been identified from a meta-analysis and subsequent replication of genome-wide association studies. Further supporting evidence for differential gene expression in CCNL1 and ZNF187 is presented from kidney biopsy and blood-derived RNA in people with and without kidney disease from NephroSeq. Evidence confirming that methylation sites influence the development of DKD may aid risk prediction tools and stimulate research to identify epigenomic therapies which might be clinically useful for this disease. Frontiers Media S.A. 2020-10-15 /pmc/articles/PMC7593403/ /pubmed/33178681 http://dx.doi.org/10.3389/fcell.2020.561907 Text en Copyright © 2020 Smyth, Patterson, Swan, Maxwell and McKnight. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cell and Developmental Biology Smyth, Laura J. Patterson, Christopher C. Swan, Elizabeth J. Maxwell, Alexander P. McKnight, Amy Jayne DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA |
title | DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA |
title_full | DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA |
title_fullStr | DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA |
title_full_unstemmed | DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA |
title_short | DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA |
title_sort | dna methylation associated with diabetic kidney disease in blood-derived dna |
topic | Cell and Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593403/ https://www.ncbi.nlm.nih.gov/pubmed/33178681 http://dx.doi.org/10.3389/fcell.2020.561907 |
work_keys_str_mv | AT smythlauraj dnamethylationassociatedwithdiabetickidneydiseaseinbloodderiveddna AT pattersonchristopherc dnamethylationassociatedwithdiabetickidneydiseaseinbloodderiveddna AT swanelizabethj dnamethylationassociatedwithdiabetickidneydiseaseinbloodderiveddna AT maxwellalexanderp dnamethylationassociatedwithdiabetickidneydiseaseinbloodderiveddna AT mcknightamyjayne dnamethylationassociatedwithdiabetickidneydiseaseinbloodderiveddna |