Cargando…

A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort

Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using...

Descripción completa

Detalles Bibliográficos
Autores principales: Massi, Michela Carlotta, Gasperoni, Francesca, Ieva, Francesca, Paganoni, Anna Maria, Zunino, Paolo, Manzoni, Andrea, Franco, Nicola Rares, Veldeman, Liv, Ost, Piet, Fonteyne, Valérie, Talbot, Christopher J., Rattay, Tim, Webb, Adam, Symonds, Paul R., Johnson, Kerstie, Lambrecht, Maarten, Haustermans, Karin, De Meerleer, Gert, de Ruysscher, Dirk, Vanneste, Ben, Van Limbergen, Evert, Choudhury, Ananya, Elliott, Rebecca M., Sperk, Elena, Herskind, Carsten, Veldwijk, Marlon R., Avuzzi, Barbara, Giandini, Tommaso, Valdagni, Riccardo, Cicchetti, Alessandro, Azria, David, Jacquet, Marie-Pierre Farcy, Rosenstein, Barry S., Stock, Richard G., Collado, Kayla, Vega, Ana, Aguado-Barrera, Miguel Elías, Calvo, Patricia, Dunning, Alison M., Fachal, Laura, Kerns, Sarah L., Payne, Debbie, Chang-Claude, Jenny, Seibold, Petra, West, Catharine M. L., Rancati, Tiziana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593843/
https://www.ncbi.nlm.nih.gov/pubmed/33178576
http://dx.doi.org/10.3389/fonc.2020.541281
_version_ 1783601489336336384
author Massi, Michela Carlotta
Gasperoni, Francesca
Ieva, Francesca
Paganoni, Anna Maria
Zunino, Paolo
Manzoni, Andrea
Franco, Nicola Rares
Veldeman, Liv
Ost, Piet
Fonteyne, Valérie
Talbot, Christopher J.
Rattay, Tim
Webb, Adam
Symonds, Paul R.
Johnson, Kerstie
Lambrecht, Maarten
Haustermans, Karin
De Meerleer, Gert
de Ruysscher, Dirk
Vanneste, Ben
Van Limbergen, Evert
Choudhury, Ananya
Elliott, Rebecca M.
Sperk, Elena
Herskind, Carsten
Veldwijk, Marlon R.
Avuzzi, Barbara
Giandini, Tommaso
Valdagni, Riccardo
Cicchetti, Alessandro
Azria, David
Jacquet, Marie-Pierre Farcy
Rosenstein, Barry S.
Stock, Richard G.
Collado, Kayla
Vega, Ana
Aguado-Barrera, Miguel Elías
Calvo, Patricia
Dunning, Alison M.
Fachal, Laura
Kerns, Sarah L.
Payne, Debbie
Chang-Claude, Jenny
Seibold, Petra
West, Catharine M. L.
Rancati, Tiziana
author_facet Massi, Michela Carlotta
Gasperoni, Francesca
Ieva, Francesca
Paganoni, Anna Maria
Zunino, Paolo
Manzoni, Andrea
Franco, Nicola Rares
Veldeman, Liv
Ost, Piet
Fonteyne, Valérie
Talbot, Christopher J.
Rattay, Tim
Webb, Adam
Symonds, Paul R.
Johnson, Kerstie
Lambrecht, Maarten
Haustermans, Karin
De Meerleer, Gert
de Ruysscher, Dirk
Vanneste, Ben
Van Limbergen, Evert
Choudhury, Ananya
Elliott, Rebecca M.
Sperk, Elena
Herskind, Carsten
Veldwijk, Marlon R.
Avuzzi, Barbara
Giandini, Tommaso
Valdagni, Riccardo
Cicchetti, Alessandro
Azria, David
Jacquet, Marie-Pierre Farcy
Rosenstein, Barry S.
Stock, Richard G.
Collado, Kayla
Vega, Ana
Aguado-Barrera, Miguel Elías
Calvo, Patricia
Dunning, Alison M.
Fachal, Laura
Kerns, Sarah L.
Payne, Debbie
Chang-Claude, Jenny
Seibold, Petra
West, Catharine M. L.
Rancati, Tiziana
author_sort Massi, Michela Carlotta
collection PubMed
description Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using a deep learning algorithm to identify patient-specific features associated with the development of toxicity, and test the approach by attempting to validate previously published genetic risk factors. Methods: The study involved REQUITE prostate cancer patients treated with external beam radiotherapy who had complete 2-year follow-up. We used five separate late toxicity endpoints: ≥grade 1 late rectal bleeding, ≥grade 2 urinary frequency, ≥grade 1 haematuria, ≥ grade 2 nocturia, ≥ grade 1 decreased urinary stream. Forty-three single nucleotide polymorphisms (SNPs) already reported in the literature to be associated with the toxicity endpoints were included in the analysis. No SNP had been studied before in the REQUITE cohort. Deep Sparse AutoEncoders (DSAE) were trained to recognize features (SNPs) identifying patients with no toxicity and tested on a different independent mixed population including patients without and with toxicity. Results: One thousand, four hundred and one patients were included, and toxicity rates were: rectal bleeding 11.7%, urinary frequency 4%, haematuria 5.5%, nocturia 7.8%, decreased urinary stream 17.1%. Twenty-four of the 43 SNPs that were associated with the toxicity endpoints were validated as identifying patients with toxicity. Twenty of the 24 SNPs were associated with the same toxicity endpoint as reported in the literature: 9 SNPs for urinary symptoms and 11 SNPs for overall toxicity. The other 4 SNPs were associated with a different endpoint. Conclusion: Deep learning algorithms can validate SNPs associated with toxicity after radiotherapy for prostate cancer. The method should be studied further to identify polygenic SNP risk signatures for radiotherapy toxicity. The signatures could then be included in integrated normal tissue complication probability models and tested for their ability to personalize radiotherapy treatment planning.
format Online
Article
Text
id pubmed-7593843
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-75938432020-11-10 A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort Massi, Michela Carlotta Gasperoni, Francesca Ieva, Francesca Paganoni, Anna Maria Zunino, Paolo Manzoni, Andrea Franco, Nicola Rares Veldeman, Liv Ost, Piet Fonteyne, Valérie Talbot, Christopher J. Rattay, Tim Webb, Adam Symonds, Paul R. Johnson, Kerstie Lambrecht, Maarten Haustermans, Karin De Meerleer, Gert de Ruysscher, Dirk Vanneste, Ben Van Limbergen, Evert Choudhury, Ananya Elliott, Rebecca M. Sperk, Elena Herskind, Carsten Veldwijk, Marlon R. Avuzzi, Barbara Giandini, Tommaso Valdagni, Riccardo Cicchetti, Alessandro Azria, David Jacquet, Marie-Pierre Farcy Rosenstein, Barry S. Stock, Richard G. Collado, Kayla Vega, Ana Aguado-Barrera, Miguel Elías Calvo, Patricia Dunning, Alison M. Fachal, Laura Kerns, Sarah L. Payne, Debbie Chang-Claude, Jenny Seibold, Petra West, Catharine M. L. Rancati, Tiziana Front Oncol Oncology Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using a deep learning algorithm to identify patient-specific features associated with the development of toxicity, and test the approach by attempting to validate previously published genetic risk factors. Methods: The study involved REQUITE prostate cancer patients treated with external beam radiotherapy who had complete 2-year follow-up. We used five separate late toxicity endpoints: ≥grade 1 late rectal bleeding, ≥grade 2 urinary frequency, ≥grade 1 haematuria, ≥ grade 2 nocturia, ≥ grade 1 decreased urinary stream. Forty-three single nucleotide polymorphisms (SNPs) already reported in the literature to be associated with the toxicity endpoints were included in the analysis. No SNP had been studied before in the REQUITE cohort. Deep Sparse AutoEncoders (DSAE) were trained to recognize features (SNPs) identifying patients with no toxicity and tested on a different independent mixed population including patients without and with toxicity. Results: One thousand, four hundred and one patients were included, and toxicity rates were: rectal bleeding 11.7%, urinary frequency 4%, haematuria 5.5%, nocturia 7.8%, decreased urinary stream 17.1%. Twenty-four of the 43 SNPs that were associated with the toxicity endpoints were validated as identifying patients with toxicity. Twenty of the 24 SNPs were associated with the same toxicity endpoint as reported in the literature: 9 SNPs for urinary symptoms and 11 SNPs for overall toxicity. The other 4 SNPs were associated with a different endpoint. Conclusion: Deep learning algorithms can validate SNPs associated with toxicity after radiotherapy for prostate cancer. The method should be studied further to identify polygenic SNP risk signatures for radiotherapy toxicity. The signatures could then be included in integrated normal tissue complication probability models and tested for their ability to personalize radiotherapy treatment planning. Frontiers Media S.A. 2020-10-15 /pmc/articles/PMC7593843/ /pubmed/33178576 http://dx.doi.org/10.3389/fonc.2020.541281 Text en Copyright © 2020 Massi, Gasperoni, Ieva, Paganoni, Zunino, Manzoni, Franco, Veldeman, Ost, Fonteyne, Talbot, Rattay, Webb, Symonds, Johnson, Lambrecht, Haustermans, De Meerleer, de Ruysscher, Vanneste, Van Limbergen, Choudhury, Elliott, Sperk, Herskind, Veldwijk, Avuzzi, Giandini, Valdagni, Cicchetti, Azria, Jacquet, Rosenstein, Stock, Collado, Vega, Aguado-Barrera, Calvo, Dunning, Fachal, Kerns, Payne, Chang-Claude, Seibold, West and Rancati. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Massi, Michela Carlotta
Gasperoni, Francesca
Ieva, Francesca
Paganoni, Anna Maria
Zunino, Paolo
Manzoni, Andrea
Franco, Nicola Rares
Veldeman, Liv
Ost, Piet
Fonteyne, Valérie
Talbot, Christopher J.
Rattay, Tim
Webb, Adam
Symonds, Paul R.
Johnson, Kerstie
Lambrecht, Maarten
Haustermans, Karin
De Meerleer, Gert
de Ruysscher, Dirk
Vanneste, Ben
Van Limbergen, Evert
Choudhury, Ananya
Elliott, Rebecca M.
Sperk, Elena
Herskind, Carsten
Veldwijk, Marlon R.
Avuzzi, Barbara
Giandini, Tommaso
Valdagni, Riccardo
Cicchetti, Alessandro
Azria, David
Jacquet, Marie-Pierre Farcy
Rosenstein, Barry S.
Stock, Richard G.
Collado, Kayla
Vega, Ana
Aguado-Barrera, Miguel Elías
Calvo, Patricia
Dunning, Alison M.
Fachal, Laura
Kerns, Sarah L.
Payne, Debbie
Chang-Claude, Jenny
Seibold, Petra
West, Catharine M. L.
Rancati, Tiziana
A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort
title A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort
title_full A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort
title_fullStr A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort
title_full_unstemmed A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort
title_short A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort
title_sort deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a requite multi-national cohort
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593843/
https://www.ncbi.nlm.nih.gov/pubmed/33178576
http://dx.doi.org/10.3389/fonc.2020.541281
work_keys_str_mv AT massimichelacarlotta adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT gasperonifrancesca adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT ievafrancesca adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT paganoniannamaria adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT zuninopaolo adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT manzoniandrea adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT franconicolarares adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT veldemanliv adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT ostpiet adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT fonteynevalerie adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT talbotchristopherj adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT rattaytim adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT webbadam adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT symondspaulr adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT johnsonkerstie adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT lambrechtmaarten adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT haustermanskarin adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT demeerleergert adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT deruysscherdirk adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT vannesteben adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT vanlimbergenevert adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT choudhuryananya adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT elliottrebeccam adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT sperkelena adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT herskindcarsten adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT veldwijkmarlonr adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT avuzzibarbara adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT giandinitommaso adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT valdagniriccardo adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT cicchettialessandro adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT azriadavid adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT jacquetmariepierrefarcy adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT rosensteinbarrys adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT stockrichardg adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT colladokayla adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT vegaana adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT aguadobarreramiguelelias adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT calvopatricia adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT dunningalisonm adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT fachallaura adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT kernssarahl adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT paynedebbie adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT changclaudejenny adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT seiboldpetra adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT westcatharineml adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT rancatitiziana adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT massimichelacarlotta deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT gasperonifrancesca deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT ievafrancesca deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT paganoniannamaria deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT zuninopaolo deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT manzoniandrea deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT franconicolarares deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT veldemanliv deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT ostpiet deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT fonteynevalerie deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT talbotchristopherj deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT rattaytim deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT webbadam deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT symondspaulr deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT johnsonkerstie deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT lambrechtmaarten deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT haustermanskarin deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT demeerleergert deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT deruysscherdirk deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT vannesteben deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT vanlimbergenevert deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT choudhuryananya deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT elliottrebeccam deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT sperkelena deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT herskindcarsten deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT veldwijkmarlonr deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT avuzzibarbara deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT giandinitommaso deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT valdagniriccardo deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT cicchettialessandro deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT azriadavid deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT jacquetmariepierrefarcy deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT rosensteinbarrys deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT stockrichardg deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT colladokayla deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT vegaana deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT aguadobarreramiguelelias deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT calvopatricia deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT dunningalisonm deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT fachallaura deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT kernssarahl deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT paynedebbie deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT changclaudejenny deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT seiboldpetra deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT westcatharineml deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort
AT rancatitiziana deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort