Cargando…
A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort
Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593843/ https://www.ncbi.nlm.nih.gov/pubmed/33178576 http://dx.doi.org/10.3389/fonc.2020.541281 |
_version_ | 1783601489336336384 |
---|---|
author | Massi, Michela Carlotta Gasperoni, Francesca Ieva, Francesca Paganoni, Anna Maria Zunino, Paolo Manzoni, Andrea Franco, Nicola Rares Veldeman, Liv Ost, Piet Fonteyne, Valérie Talbot, Christopher J. Rattay, Tim Webb, Adam Symonds, Paul R. Johnson, Kerstie Lambrecht, Maarten Haustermans, Karin De Meerleer, Gert de Ruysscher, Dirk Vanneste, Ben Van Limbergen, Evert Choudhury, Ananya Elliott, Rebecca M. Sperk, Elena Herskind, Carsten Veldwijk, Marlon R. Avuzzi, Barbara Giandini, Tommaso Valdagni, Riccardo Cicchetti, Alessandro Azria, David Jacquet, Marie-Pierre Farcy Rosenstein, Barry S. Stock, Richard G. Collado, Kayla Vega, Ana Aguado-Barrera, Miguel Elías Calvo, Patricia Dunning, Alison M. Fachal, Laura Kerns, Sarah L. Payne, Debbie Chang-Claude, Jenny Seibold, Petra West, Catharine M. L. Rancati, Tiziana |
author_facet | Massi, Michela Carlotta Gasperoni, Francesca Ieva, Francesca Paganoni, Anna Maria Zunino, Paolo Manzoni, Andrea Franco, Nicola Rares Veldeman, Liv Ost, Piet Fonteyne, Valérie Talbot, Christopher J. Rattay, Tim Webb, Adam Symonds, Paul R. Johnson, Kerstie Lambrecht, Maarten Haustermans, Karin De Meerleer, Gert de Ruysscher, Dirk Vanneste, Ben Van Limbergen, Evert Choudhury, Ananya Elliott, Rebecca M. Sperk, Elena Herskind, Carsten Veldwijk, Marlon R. Avuzzi, Barbara Giandini, Tommaso Valdagni, Riccardo Cicchetti, Alessandro Azria, David Jacquet, Marie-Pierre Farcy Rosenstein, Barry S. Stock, Richard G. Collado, Kayla Vega, Ana Aguado-Barrera, Miguel Elías Calvo, Patricia Dunning, Alison M. Fachal, Laura Kerns, Sarah L. Payne, Debbie Chang-Claude, Jenny Seibold, Petra West, Catharine M. L. Rancati, Tiziana |
author_sort | Massi, Michela Carlotta |
collection | PubMed |
description | Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using a deep learning algorithm to identify patient-specific features associated with the development of toxicity, and test the approach by attempting to validate previously published genetic risk factors. Methods: The study involved REQUITE prostate cancer patients treated with external beam radiotherapy who had complete 2-year follow-up. We used five separate late toxicity endpoints: ≥grade 1 late rectal bleeding, ≥grade 2 urinary frequency, ≥grade 1 haematuria, ≥ grade 2 nocturia, ≥ grade 1 decreased urinary stream. Forty-three single nucleotide polymorphisms (SNPs) already reported in the literature to be associated with the toxicity endpoints were included in the analysis. No SNP had been studied before in the REQUITE cohort. Deep Sparse AutoEncoders (DSAE) were trained to recognize features (SNPs) identifying patients with no toxicity and tested on a different independent mixed population including patients without and with toxicity. Results: One thousand, four hundred and one patients were included, and toxicity rates were: rectal bleeding 11.7%, urinary frequency 4%, haematuria 5.5%, nocturia 7.8%, decreased urinary stream 17.1%. Twenty-four of the 43 SNPs that were associated with the toxicity endpoints were validated as identifying patients with toxicity. Twenty of the 24 SNPs were associated with the same toxicity endpoint as reported in the literature: 9 SNPs for urinary symptoms and 11 SNPs for overall toxicity. The other 4 SNPs were associated with a different endpoint. Conclusion: Deep learning algorithms can validate SNPs associated with toxicity after radiotherapy for prostate cancer. The method should be studied further to identify polygenic SNP risk signatures for radiotherapy toxicity. The signatures could then be included in integrated normal tissue complication probability models and tested for their ability to personalize radiotherapy treatment planning. |
format | Online Article Text |
id | pubmed-7593843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75938432020-11-10 A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort Massi, Michela Carlotta Gasperoni, Francesca Ieva, Francesca Paganoni, Anna Maria Zunino, Paolo Manzoni, Andrea Franco, Nicola Rares Veldeman, Liv Ost, Piet Fonteyne, Valérie Talbot, Christopher J. Rattay, Tim Webb, Adam Symonds, Paul R. Johnson, Kerstie Lambrecht, Maarten Haustermans, Karin De Meerleer, Gert de Ruysscher, Dirk Vanneste, Ben Van Limbergen, Evert Choudhury, Ananya Elliott, Rebecca M. Sperk, Elena Herskind, Carsten Veldwijk, Marlon R. Avuzzi, Barbara Giandini, Tommaso Valdagni, Riccardo Cicchetti, Alessandro Azria, David Jacquet, Marie-Pierre Farcy Rosenstein, Barry S. Stock, Richard G. Collado, Kayla Vega, Ana Aguado-Barrera, Miguel Elías Calvo, Patricia Dunning, Alison M. Fachal, Laura Kerns, Sarah L. Payne, Debbie Chang-Claude, Jenny Seibold, Petra West, Catharine M. L. Rancati, Tiziana Front Oncol Oncology Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using a deep learning algorithm to identify patient-specific features associated with the development of toxicity, and test the approach by attempting to validate previously published genetic risk factors. Methods: The study involved REQUITE prostate cancer patients treated with external beam radiotherapy who had complete 2-year follow-up. We used five separate late toxicity endpoints: ≥grade 1 late rectal bleeding, ≥grade 2 urinary frequency, ≥grade 1 haematuria, ≥ grade 2 nocturia, ≥ grade 1 decreased urinary stream. Forty-three single nucleotide polymorphisms (SNPs) already reported in the literature to be associated with the toxicity endpoints were included in the analysis. No SNP had been studied before in the REQUITE cohort. Deep Sparse AutoEncoders (DSAE) were trained to recognize features (SNPs) identifying patients with no toxicity and tested on a different independent mixed population including patients without and with toxicity. Results: One thousand, four hundred and one patients were included, and toxicity rates were: rectal bleeding 11.7%, urinary frequency 4%, haematuria 5.5%, nocturia 7.8%, decreased urinary stream 17.1%. Twenty-four of the 43 SNPs that were associated with the toxicity endpoints were validated as identifying patients with toxicity. Twenty of the 24 SNPs were associated with the same toxicity endpoint as reported in the literature: 9 SNPs for urinary symptoms and 11 SNPs for overall toxicity. The other 4 SNPs were associated with a different endpoint. Conclusion: Deep learning algorithms can validate SNPs associated with toxicity after radiotherapy for prostate cancer. The method should be studied further to identify polygenic SNP risk signatures for radiotherapy toxicity. The signatures could then be included in integrated normal tissue complication probability models and tested for their ability to personalize radiotherapy treatment planning. Frontiers Media S.A. 2020-10-15 /pmc/articles/PMC7593843/ /pubmed/33178576 http://dx.doi.org/10.3389/fonc.2020.541281 Text en Copyright © 2020 Massi, Gasperoni, Ieva, Paganoni, Zunino, Manzoni, Franco, Veldeman, Ost, Fonteyne, Talbot, Rattay, Webb, Symonds, Johnson, Lambrecht, Haustermans, De Meerleer, de Ruysscher, Vanneste, Van Limbergen, Choudhury, Elliott, Sperk, Herskind, Veldwijk, Avuzzi, Giandini, Valdagni, Cicchetti, Azria, Jacquet, Rosenstein, Stock, Collado, Vega, Aguado-Barrera, Calvo, Dunning, Fachal, Kerns, Payne, Chang-Claude, Seibold, West and Rancati. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Massi, Michela Carlotta Gasperoni, Francesca Ieva, Francesca Paganoni, Anna Maria Zunino, Paolo Manzoni, Andrea Franco, Nicola Rares Veldeman, Liv Ost, Piet Fonteyne, Valérie Talbot, Christopher J. Rattay, Tim Webb, Adam Symonds, Paul R. Johnson, Kerstie Lambrecht, Maarten Haustermans, Karin De Meerleer, Gert de Ruysscher, Dirk Vanneste, Ben Van Limbergen, Evert Choudhury, Ananya Elliott, Rebecca M. Sperk, Elena Herskind, Carsten Veldwijk, Marlon R. Avuzzi, Barbara Giandini, Tommaso Valdagni, Riccardo Cicchetti, Alessandro Azria, David Jacquet, Marie-Pierre Farcy Rosenstein, Barry S. Stock, Richard G. Collado, Kayla Vega, Ana Aguado-Barrera, Miguel Elías Calvo, Patricia Dunning, Alison M. Fachal, Laura Kerns, Sarah L. Payne, Debbie Chang-Claude, Jenny Seibold, Petra West, Catharine M. L. Rancati, Tiziana A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort |
title | A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort |
title_full | A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort |
title_fullStr | A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort |
title_full_unstemmed | A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort |
title_short | A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort |
title_sort | deep learning approach validates genetic risk factors for late toxicity after prostate cancer radiotherapy in a requite multi-national cohort |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593843/ https://www.ncbi.nlm.nih.gov/pubmed/33178576 http://dx.doi.org/10.3389/fonc.2020.541281 |
work_keys_str_mv | AT massimichelacarlotta adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT gasperonifrancesca adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT ievafrancesca adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT paganoniannamaria adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT zuninopaolo adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT manzoniandrea adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT franconicolarares adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT veldemanliv adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT ostpiet adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT fonteynevalerie adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT talbotchristopherj adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT rattaytim adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT webbadam adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT symondspaulr adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT johnsonkerstie adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT lambrechtmaarten adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT haustermanskarin adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT demeerleergert adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT deruysscherdirk adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT vannesteben adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT vanlimbergenevert adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT choudhuryananya adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT elliottrebeccam adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT sperkelena adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT herskindcarsten adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT veldwijkmarlonr adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT avuzzibarbara adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT giandinitommaso adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT valdagniriccardo adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT cicchettialessandro adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT azriadavid adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT jacquetmariepierrefarcy adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT rosensteinbarrys adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT stockrichardg adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT colladokayla adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT vegaana adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT aguadobarreramiguelelias adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT calvopatricia adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT dunningalisonm adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT fachallaura adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT kernssarahl adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT paynedebbie adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT changclaudejenny adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT seiboldpetra adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT westcatharineml adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT rancatitiziana adeeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT massimichelacarlotta deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT gasperonifrancesca deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT ievafrancesca deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT paganoniannamaria deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT zuninopaolo deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT manzoniandrea deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT franconicolarares deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT veldemanliv deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT ostpiet deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT fonteynevalerie deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT talbotchristopherj deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT rattaytim deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT webbadam deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT symondspaulr deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT johnsonkerstie deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT lambrechtmaarten deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT haustermanskarin deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT demeerleergert deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT deruysscherdirk deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT vannesteben deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT vanlimbergenevert deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT choudhuryananya deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT elliottrebeccam deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT sperkelena deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT herskindcarsten deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT veldwijkmarlonr deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT avuzzibarbara deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT giandinitommaso deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT valdagniriccardo deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT cicchettialessandro deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT azriadavid deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT jacquetmariepierrefarcy deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT rosensteinbarrys deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT stockrichardg deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT colladokayla deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT vegaana deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT aguadobarreramiguelelias deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT calvopatricia deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT dunningalisonm deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT fachallaura deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT kernssarahl deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT paynedebbie deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT changclaudejenny deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT seiboldpetra deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT westcatharineml deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort AT rancatitiziana deeplearningapproachvalidatesgeneticriskfactorsforlatetoxicityafterprostatecancerradiotherapyinarequitemultinationalcohort |