Cargando…

Preliminary Study on Sustainable NPK Slow-Release Fertilizers Based on Byproducts and Leftovers: A Design-of-Experiment Approach

[Image: see text] In this study, an organic nitrogen-based coating was developed based on black soldier fly (BSF) prepupae reared on poultry dejections and deposited on ceramic lightweight aggregates (LWAs), containing phosphorous (P) and potassium (K) from agroresidues, leading to a complete nitrog...

Descripción completa

Detalles Bibliográficos
Autores principales: Barbi, Silvia, Barbieri, Francesco, Andreola, Fernanda, Lancellotti, Isabella, Barbieri, Luisa, Montorsi, Monia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594001/
https://www.ncbi.nlm.nih.gov/pubmed/33134675
http://dx.doi.org/10.1021/acsomega.0c03082
Descripción
Sumario:[Image: see text] In this study, an organic nitrogen-based coating was developed based on black soldier fly (BSF) prepupae reared on poultry dejections and deposited on ceramic lightweight aggregates (LWAs), containing phosphorous (P) and potassium (K) from agroresidues, leading to a complete nitrogen, phosphorus, and potassium (NPK) fertilizer. To obtain a resistant coating with good adhesion to LWAs, different plasticizing agents were tested (e.g., glycerol, cellulose, and polyethylene glycol). The coating formulation was optimized through a design-of-experiment (DoE) approach to correlate the effect of each mixture component on the coating’s performance. BSF biomass was characterized through chemical and thermal routes, as well as the final coated LWAs, confirming their general agreement to fertilizer’s requirements. Release tests in static conditions highlighted the barrier action of the coating, preventing uncontrolled release of potassium and phosphorus contained in the LWAs as well as the release of nitrogen after 21 days (near to 20%). Germination and growth tests indicated a valuable increase of the growth index, whereas the germination process is limited by the coating barrier effect. This work proposes a new product in the field of slow-release fertilizers designed by rational methodologies and innovative materials based on waste valorization, fully in agreement with a circular economy perspective.