Cargando…
Discriminative Sparse Filtering for Multi-Source Image Classification
Distribution mismatch caused by various resolutions, backgrounds, etc. can be easily found in multi-sensor systems. Domain adaptation attempts to reduce such domain discrepancy by means of different measurements, e.g., maximum mean discrepancy (MMD). Despite their success, such methods often fail to...
Autores principales: | Han, Chao, Zhou, Deyun, Yang, Zhen, Xie, Yu, Zhang, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594069/ https://www.ncbi.nlm.nih.gov/pubmed/33081365 http://dx.doi.org/10.3390/s20205868 |
Ejemplares similares
-
Self-supervised sparse coding scheme for image classification based on low rank representation
por: Li, Ao, et al.
Publicado: (2018) -
Sparse Angle CBCT Reconstruction Based on Guided Image Filtering
por: Xu, Siyuan, et al.
Publicado: (2022) -
Multi-Scale Superpixels Dimension Reduction Hyperspectral Image Classification Algorithm Based on Low Rank Sparse Representation Joint Hierarchical Recursive Filtering
por: Qu, Shenming, et al.
Publicado: (2021) -
Compressed sensing & sparse filtering
por: Carmi, Avishy Y, et al.
Publicado: (2013) -
Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification
por: Bing, Lu, et al.
Publicado: (2017)