Cargando…
MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study
OBJECTIVES: To develop and validate a MRI-based radiomic method to predict malignancies in lipomatous soft tissue tumors. METHODS: This retrospective study searched in the database of our pathology department, data from patients with lipomatous soft tissue tumors, with histology and gadolinium-contr...
Autores principales: | Leporq, Benjamin, Bouhamama, Amine, Pilleul, Frank, Lame, Fabrice, Bihane, Catherine, Sdika, Michael, Blay, Jean-Yves, Beuf, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594281/ https://www.ncbi.nlm.nih.gov/pubmed/33115533 http://dx.doi.org/10.1186/s40644-020-00354-7 |
Ejemplares similares
-
Prediction of lipomatous soft tissue malignancy on MRI: comparison between machine learning applied to radiomics and deep learning
por: Fradet, Guillaume, et al.
Publicado: (2022) -
Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches
por: Faraz, Khuram, et al.
Publicado: (2023) -
Radiomics combined with transcriptomics to predict response to immunotherapy from patients treated with PD-1/PD-L1 inhibitors for advanced NSCLC
por: Bouhamama, Amine, et al.
Publicado: (2023) -
Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing
por: Leporq, Benjamin, et al.
Publicado: (2013) -
Descending thoracic aortic aneurysm revealing metastasis of a soft tissue fibrosarcoma: a case report and review of the literature
por: Delerce, Clotilde, et al.
Publicado: (2018)