Cargando…

Conditionally positive: a qualitative study of public perceptions about using health data for artificial intelligence research

OBJECTIVES: Given widespread interest in applying artificial intelligence (AI) to health data to improve patient care and health system efficiency, there is a need to understand the perspectives of the general public regarding the use of health data in AI research. DESIGN: A qualitative study involv...

Descripción completa

Detalles Bibliográficos
Autores principales: McCradden, Melissa D, Sarker, Tasmie, Paprica, P Alison
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594363/
https://www.ncbi.nlm.nih.gov/pubmed/33115901
http://dx.doi.org/10.1136/bmjopen-2020-039798
Descripción
Sumario:OBJECTIVES: Given widespread interest in applying artificial intelligence (AI) to health data to improve patient care and health system efficiency, there is a need to understand the perspectives of the general public regarding the use of health data in AI research. DESIGN: A qualitative study involving six focus groups with members of the public. Participants discussed their views about AI in general, then were asked to share their thoughts about three realistic health AI research scenarios. Data were analysed using qualitative description thematic analysis. SETTINGS: Two cities in Ontario, Canada: Sudbury (400 km north of Toronto) and Mississauga (part of the Greater Toronto Area). PARTICIPANTS: Forty-one purposively sampled members of the public (21M:20F, 25–65 years, median age 40). RESULTS: Participants had low levels of prior knowledge of AI and mixed, mostly negative, perceptions of AI in general. Most endorsed using data for health AI research when there is strong potential for public benefit, providing that concerns about privacy, commercial motives and other risks were addressed. Inductive thematic analysis identified AI-specific hopes (eg, potential for faster and more accurate analyses, ability to use more data), fears (eg, loss of human touch, skill depreciation from over-reliance on machines) and conditions (eg, human verification of computer-aided decisions, transparency). There were mixed views about whether data subject consent is required for health AI research, with most participants wanting to know if, how and by whom their data were used. Though it was not an objective of the study, realistic health AI scenarios were found to have an educational effect. CONCLUSIONS: Notwithstanding concerns and limited knowledge about AI in general, most members of the general public in six focus groups in Ontario, Canada perceived benefits from health AI and conditionally supported the use of health data for AI research.