Cargando…

Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data

BACKGROUND: The E2F family of transcription factor 2 (E2F2) plays an important role in the development and progression of various tumors, but its association with hepatocellular carcinoma (HCC) remains unknown. Our study aimed to investigate the role and clinical significance of E2F2 in HCC. METHODS...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Zhili, Cao, Zebiao, Tang, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594443/
https://www.ncbi.nlm.nih.gov/pubmed/33115417
http://dx.doi.org/10.1186/s12885-020-07529-2
_version_ 1783601637703548928
author Zeng, Zhili
Cao, Zebiao
Tang, Ying
author_facet Zeng, Zhili
Cao, Zebiao
Tang, Ying
author_sort Zeng, Zhili
collection PubMed
description BACKGROUND: The E2F family of transcription factor 2 (E2F2) plays an important role in the development and progression of various tumors, but its association with hepatocellular carcinoma (HCC) remains unknown. Our study aimed to investigate the role and clinical significance of E2F2 in HCC. METHODS: HCC raw data were extracted from The Cancer Genome Atlas (TCGA). Wilcoxon signed-rank test, Kruskal-Wallis test and logistic regression were applied to analyze the relationship between the expression of E2F2 and clinicopathologic characteristics. Cox regression and Kaplan-Meier were employed to evaluate the correlation between clinicopathologic features and survival. The biological function of E2F2 was annotated by Gene Set Enrichment Analysis (GSEA). RESULTS: The expression of E2F2 was increased in HCC samples. The expression of elevated E2F2 in HCC samples was prominently correlated with histologic grade (OR = 2.62 for G3–4 vs. G1–2, p = 1.80E-05), clinical stage (OR = 1.74 for III-IV vs. I-II, p = 0.03), T (OR = 1.64 for T3–4 vs.T1–2, p = 0.04), tumor status (OR = 1.88 for with tumor vs. tumor free, p = 3.79E-03), plasma alpha fetoprotein (AFP) value (OR = 3.18 for AFP ≥ 400 vs AFP<20, p = 2.16E-04; OR = 2.50 for 20 ≤ AFP<400 vs AFP<20, p = 2.56E-03). Increased E2F2 had an unfavorable OS (p = 7.468e− 05), PFI (p = 3.183e− 05), DFI (p = 0.001), DSS (p = 4.172e− 05). Elevated E2F2 was independently bound up with OS (p = 0.004, hazard ratio [HR] = 2.4 (95% CI [1.3–4.2])), DFI (P = 0.029, hazard ratio [HR] = 2.0 (95% CI [1.1–3.7])) and PFI (P = 0.005, hazard ratio [HR] = 2.2 (95% CI [1.3–3.9])). GSEA disclosed that cell circle, RNA degradation, pyrimidine metabolism, base excision repair, aminoacyl tRNA biosynthesis, DNA replication, p53 signaling pathway, nucleotide excision repair, ubiquitin-mediated proteolysis, citrate cycle TCA cycle were notably enriched in E2F2 high expression phenotype. CONCLUSIONS: Elevated E2F2 can be a promising independent prognostic biomarker and therapeutic target for HCC. Additionally, cell cycle, pyrimidine metabolism, DNA replication, p53 signaling pathway, ubiquitin-mediated proteolysis, the citrate cycle TCA cycle may be the key pathway by which E2F2 participates in the initial and progression of HCC.
format Online
Article
Text
id pubmed-7594443
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-75944432020-10-30 Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data Zeng, Zhili Cao, Zebiao Tang, Ying BMC Cancer Research Article BACKGROUND: The E2F family of transcription factor 2 (E2F2) plays an important role in the development and progression of various tumors, but its association with hepatocellular carcinoma (HCC) remains unknown. Our study aimed to investigate the role and clinical significance of E2F2 in HCC. METHODS: HCC raw data were extracted from The Cancer Genome Atlas (TCGA). Wilcoxon signed-rank test, Kruskal-Wallis test and logistic regression were applied to analyze the relationship between the expression of E2F2 and clinicopathologic characteristics. Cox regression and Kaplan-Meier were employed to evaluate the correlation between clinicopathologic features and survival. The biological function of E2F2 was annotated by Gene Set Enrichment Analysis (GSEA). RESULTS: The expression of E2F2 was increased in HCC samples. The expression of elevated E2F2 in HCC samples was prominently correlated with histologic grade (OR = 2.62 for G3–4 vs. G1–2, p = 1.80E-05), clinical stage (OR = 1.74 for III-IV vs. I-II, p = 0.03), T (OR = 1.64 for T3–4 vs.T1–2, p = 0.04), tumor status (OR = 1.88 for with tumor vs. tumor free, p = 3.79E-03), plasma alpha fetoprotein (AFP) value (OR = 3.18 for AFP ≥ 400 vs AFP<20, p = 2.16E-04; OR = 2.50 for 20 ≤ AFP<400 vs AFP<20, p = 2.56E-03). Increased E2F2 had an unfavorable OS (p = 7.468e− 05), PFI (p = 3.183e− 05), DFI (p = 0.001), DSS (p = 4.172e− 05). Elevated E2F2 was independently bound up with OS (p = 0.004, hazard ratio [HR] = 2.4 (95% CI [1.3–4.2])), DFI (P = 0.029, hazard ratio [HR] = 2.0 (95% CI [1.1–3.7])) and PFI (P = 0.005, hazard ratio [HR] = 2.2 (95% CI [1.3–3.9])). GSEA disclosed that cell circle, RNA degradation, pyrimidine metabolism, base excision repair, aminoacyl tRNA biosynthesis, DNA replication, p53 signaling pathway, nucleotide excision repair, ubiquitin-mediated proteolysis, citrate cycle TCA cycle were notably enriched in E2F2 high expression phenotype. CONCLUSIONS: Elevated E2F2 can be a promising independent prognostic biomarker and therapeutic target for HCC. Additionally, cell cycle, pyrimidine metabolism, DNA replication, p53 signaling pathway, ubiquitin-mediated proteolysis, the citrate cycle TCA cycle may be the key pathway by which E2F2 participates in the initial and progression of HCC. BioMed Central 2020-10-28 /pmc/articles/PMC7594443/ /pubmed/33115417 http://dx.doi.org/10.1186/s12885-020-07529-2 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Zeng, Zhili
Cao, Zebiao
Tang, Ying
Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data
title Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data
title_full Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data
title_fullStr Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data
title_full_unstemmed Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data
title_short Increased E2F2 predicts poor prognosis in patients with HCC based on TCGA data
title_sort increased e2f2 predicts poor prognosis in patients with hcc based on tcga data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594443/
https://www.ncbi.nlm.nih.gov/pubmed/33115417
http://dx.doi.org/10.1186/s12885-020-07529-2
work_keys_str_mv AT zengzhili increasede2f2predictspoorprognosisinpatientswithhccbasedontcgadata
AT caozebiao increasede2f2predictspoorprognosisinpatientswithhccbasedontcgadata
AT tangying increasede2f2predictspoorprognosisinpatientswithhccbasedontcgadata