Cargando…
Approximate Genome-Based Kernel Models for Large Data Sets Including Main Effects and Interactions
The rapid development of molecular markers and sequencing technologies has made it possible to use genomic prediction (GP) and selection (GS) in animal and plant breeding. However, when the number of observations (n) is large (thousands or millions), computational difficulties when handling these la...
Autores principales: | Cuevas, Jaime, Montesinos-López, Osval A., Martini, J. W. R., Pérez-Rodríguez, Paulino, Lillemo, Morten, Crossa, Jose |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594507/ https://www.ncbi.nlm.nih.gov/pubmed/33193659 http://dx.doi.org/10.3389/fgene.2020.567757 |
Ejemplares similares
-
Deep Kernel and Deep Learning for Genome-Based Prediction of Single Traits in Multienvironment Breeding Trials
por: Crossa, José, et al.
Publicado: (2019) -
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
por: Cuevas, Jaime, et al.
Publicado: (2016) -
Partial Least Squares Enhances Genomic Prediction of New Environments
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
Deep Kernel for Genomic and Near Infrared Predictions in Multi-environment Breeding Trials
por: Cuevas, Jaime, et al.
Publicado: (2019) -
A New Deep Learning Calibration Method Enhances Genome-Based Prediction of Continuous Crop Traits
por: Montesinos-López, Osval A., et al.
Publicado: (2021)