Cargando…
Adjusting climate model bias for agricultural impact assessment: How to cut the mustard
Autores principales: | Galmarini, S., Cannon, A.J., Ceglar, A., Christensen, O.B., de Noblet-Ducoudré, N., Dentener, F., Doblas-Reyes, F.J., Dosio, A., Gutierrez, J.M., Iturbide, M., Jury, M., Lange, S., Loukos, H., Maiorano, A., Maraun, D., McGinnis, S., Nikulin, G., Riccio, A., Sanchez, E., Solazzo, E., Toreti, A., Vrac, M., Zampieri, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594620/ https://www.ncbi.nlm.nih.gov/pubmed/33150217 http://dx.doi.org/10.1016/j.cliser.2019.01.004 |
Ejemplares similares
-
Clisagri: An R package for agro-climate services
por: Ceglar, A., et al.
Publicado: (2020) -
Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast
por: Ceglar, Andrej, et al.
Publicado: (2018) -
Using reanalysis in crop monitoring and forecasting systems
por: Toreti, A., et al.
Publicado: (2019) -
Linking crop yield anomalies to large-scale atmospheric circulation in Europe
por: Ceglar, Andrej, et al.
Publicado: (2017) -
Climate service driven adaptation may alleviate the impacts of climate change in agriculture
por: Toreti, Andrea, et al.
Publicado: (2022)