Cargando…

Nuclear global spaces of ultradifferentiable functions in the matrix weighted setting

We prove that the Hermite functions are an absolute Schauder basis for many global weighted spaces of ultradifferentiable functions in the matrix weighted setting and we determine also the corresponding coefficient spaces, thus extending the previous work by Langenbruch. As a consequence, we give ve...

Descripción completa

Detalles Bibliográficos
Autores principales: Boiti, Chiara, Jornet, David, Oliaro, Alessandro, Schindl, Gerhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594626/
https://www.ncbi.nlm.nih.gov/pubmed/33184613
http://dx.doi.org/10.1007/s43037-020-00090-x
Descripción
Sumario:We prove that the Hermite functions are an absolute Schauder basis for many global weighted spaces of ultradifferentiable functions in the matrix weighted setting and we determine also the corresponding coefficient spaces, thus extending the previous work by Langenbruch. As a consequence, we give very general conditions for these spaces to be nuclear. In particular, we obtain the corresponding results for spaces defined by weight functions.