Cargando…
Natural language processing and machine learning to enable automatic extraction and classification of patients’ smoking status from electronic medical records
BACKGROUND: The electronic medical record (EMR) offers unique possibilities for clinical research, but some important patient attributes are not readily available due to its unstructured properties. We applied text mining using machine learning to enable automatic classification of unstructured info...
Autores principales: | Caccamisi, Andrea, Jørgensen, Leif, Dalianis, Hercules, Rosenlund, Mats |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594865/ https://www.ncbi.nlm.nih.gov/pubmed/32696698 http://dx.doi.org/10.1080/03009734.2020.1792010 |
Ejemplares similares
-
Clinical Natural Language Processing in languages other than English: opportunities and challenges
por: Névéol, Aurélie, et al.
Publicado: (2018) -
Medical Classifications and Terminologies
por: Dalianis, Hercules
Publicado: (2018) -
Detecting hospital-acquired infections: A document classification approach using support vector machines and gradient tree boosting
por: Ehrentraut, Claudia, et al.
Publicado: (2016) -
Natural language generation for electronic health records
por: Lee, Scott H.
Publicado: (2018) -
Predicting sepsis onset using a machine learned causal probabilistic network algorithm based on electronic health records data
por: Valik, John Karlsson, et al.
Publicado: (2023)