Cargando…

Evaluation of semi-quantitative compared to quantitative cultures of tracheal aspirates for the yield of culturable respiratory pathogens – a cross-sectional study

BACKGROUND: Diagnosis of lower respiratory tract infections (LRTI) depends on the presence of clinical, radiological and microbiological findings. Endotracheal suction aspirate (ETSA) is the commonest respiratory sample sent for culture from intubated patients. Very few studies have compared quantit...

Descripción completa

Detalles Bibliográficos
Autores principales: Rattani, Salima, Farooqi, Joveria, Jabeen, Ghazala, Chandio, Saeeda, Kash, Qaiser, Khan, Aijaz, Jabeen, Kauser
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594958/
https://www.ncbi.nlm.nih.gov/pubmed/33121470
http://dx.doi.org/10.1186/s12890-020-01311-7
Descripción
Sumario:BACKGROUND: Diagnosis of lower respiratory tract infections (LRTI) depends on the presence of clinical, radiological and microbiological findings. Endotracheal suction aspirate (ETSA) is the commonest respiratory sample sent for culture from intubated patients. Very few studies have compared quantitative and semi-quantitative processing of ETSA cultures for LRTI diagnosis. We determined the diagnostic accuracy of quantitative and semi-quantitative ETSA culture for LRTI diagnosis, agreement between the quantitative and semi quantitative culture techniques and the yield of respiratory pathogens with both methods. METHODS: This was a cross-sectional study conducted at the Aga Khan University clinical laboratory, Karachi, Pakistan. One hundred and seventy-eight ETSA samples sent for routine bacteriological cultures were processed quantitatively as part of regular specimen processing method and semi-quantitatively. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy was calculated for both methods using clinical diagnosis of pneumonia as reference standard. Agreement between the quantitative and semi quantitative methods was assessed via the kappa statistic test. Pathogen yield between the two methods was compared using Pearson’s chi-square test. RESULTS: The quantitative and semi-quantitative methods yielded pathogens in 81 (45.5%) and 85 (47.8%) cases respectively. There was complete concordance of both techniques in 155 (87.1%) ETSA samples. No growth was observed in 45 (25.3%) ETSA specimens with quantitative culture and 37 (20.8%) cases by semi-quantitative culture. The diagnostic accuracy of both techniques were comparable; 64.6% for quantitative and 64.0% for semi-quantitative culture. The kappa agreement was found to be 0.84 (95% CI, 0.77–0.91) representing almost perfect agreement between the two methods. Although semi-quantitative cultures yielded more pathogens (47.8%) as compared to quantitative ETSA cultures (45.5%), the difference was only 2.3%. However, this difference achieved statistical (chi-square p-value < 0.001) favoring semi-quantitative culture methods over quantitative culture techniques for processing ETSA. CONCLUSION: In conclusion, there is a strong agreement between the performances of both methods of processing ETSA cultures in terms of accuracy of LRTI diagnosis. Semi-quantitative cultures of ETSA yielded more pathogens as compared to quantitative cultures. Although both techniques were comparable, we recommend processing of ETSA using semi-quantitative technique due to its ease and reduced processing time.