Cargando…
Kernel methods and their derivatives: Concept and perspectives for the earth system sciences
Kernel methods are powerful machine learning techniques which use generic non-linear functions to solve complex tasks. They have a solid mathematical foundation and exhibit excellent performance in practice. However, kernel machines are still considered black-box models as the kernel feature mapping...
Autores principales: | Johnson, J. Emmanuel, Laparra, Valero, Pérez-Suay, Adrián, Mahecha, Miguel D., Camps-Valls, Gustau |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595302/ https://www.ncbi.nlm.nih.gov/pubmed/33119617 http://dx.doi.org/10.1371/journal.pone.0235885 |
Ejemplares similares
-
Correction: Kernel methods and their derivatives: Concept and perspectives for the earth system sciences
por: Johnson, J. Emmanuel, et al.
Publicado: (2021) -
Kernel Manifold Alignment for Domain Adaptation
por: Tuia, Devis, et al.
Publicado: (2016) -
A perspective on Gaussian processes for Earth observation
por: Camps-Valls, Gustau, et al.
Publicado: (2019) -
Inferring causation from time series in Earth system sciences
por: Runge, Jakob, et al.
Publicado: (2019) -
Synergistic integration of optical and microwave satellite data for crop yield estimation
por: Mateo-Sanchis, Anna, et al.
Publicado: (2019)