Cargando…
A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model
Decreasing the cost of high-throughput DNA sequencing technologies, provides a huge amount of data that enables researchers to determine haplotypes for diploid and polyploid organisms. Although various methods have been developed to reconstruct haplotypes in diploid form, their accuracy is still a c...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595403/ https://www.ncbi.nlm.nih.gov/pubmed/33120403 http://dx.doi.org/10.1371/journal.pone.0241291 |
_version_ | 1783601861721325568 |
---|---|
author | Olyaee, Mohammad Hossein Khanteymoori, Alireza Khalifeh, Khosrow |
author_facet | Olyaee, Mohammad Hossein Khanteymoori, Alireza Khalifeh, Khosrow |
author_sort | Olyaee, Mohammad Hossein |
collection | PubMed |
description | Decreasing the cost of high-throughput DNA sequencing technologies, provides a huge amount of data that enables researchers to determine haplotypes for diploid and polyploid organisms. Although various methods have been developed to reconstruct haplotypes in diploid form, their accuracy is still a challenging task. Also, most of the current methods cannot be applied to polyploid form. In this paper, an iterative method is proposed, which employs hypergraph to reconstruct haplotype. The proposed method by utilizing chaotic viewpoint can enhance the obtained haplotypes. For this purpose, a haplotype set was randomly generated as an initial estimate, and its consistency with the input fragments was described by constructing a weighted hypergraph. Partitioning the hypergraph specifies those positions in the haplotype set that need to be corrected. This procedure is repeated until no further improvement could be achieved. Each element of the finalized haplotype set is mapped to a line by chaos game representation, and a coordinate series is defined based on the position of mapped points. Then, some positions with low qualities can be assessed by applying a local projection. Experimental results on both simulated and real datasets demonstrate that this method outperforms most other approaches, and is promising to perform the haplotype assembly. |
format | Online Article Text |
id | pubmed-7595403 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75954032020-11-03 A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model Olyaee, Mohammad Hossein Khanteymoori, Alireza Khalifeh, Khosrow PLoS One Research Article Decreasing the cost of high-throughput DNA sequencing technologies, provides a huge amount of data that enables researchers to determine haplotypes for diploid and polyploid organisms. Although various methods have been developed to reconstruct haplotypes in diploid form, their accuracy is still a challenging task. Also, most of the current methods cannot be applied to polyploid form. In this paper, an iterative method is proposed, which employs hypergraph to reconstruct haplotype. The proposed method by utilizing chaotic viewpoint can enhance the obtained haplotypes. For this purpose, a haplotype set was randomly generated as an initial estimate, and its consistency with the input fragments was described by constructing a weighted hypergraph. Partitioning the hypergraph specifies those positions in the haplotype set that need to be corrected. This procedure is repeated until no further improvement could be achieved. Each element of the finalized haplotype set is mapped to a line by chaos game representation, and a coordinate series is defined based on the position of mapped points. Then, some positions with low qualities can be assessed by applying a local projection. Experimental results on both simulated and real datasets demonstrate that this method outperforms most other approaches, and is promising to perform the haplotype assembly. Public Library of Science 2020-10-29 /pmc/articles/PMC7595403/ /pubmed/33120403 http://dx.doi.org/10.1371/journal.pone.0241291 Text en © 2020 Olyaee et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Olyaee, Mohammad Hossein Khanteymoori, Alireza Khalifeh, Khosrow A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model |
title | A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model |
title_full | A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model |
title_fullStr | A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model |
title_full_unstemmed | A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model |
title_short | A chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model |
title_sort | chaotic viewpoint-based approach to solve haplotype assembly using hypergraph model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595403/ https://www.ncbi.nlm.nih.gov/pubmed/33120403 http://dx.doi.org/10.1371/journal.pone.0241291 |
work_keys_str_mv | AT olyaeemohammadhossein achaoticviewpointbasedapproachtosolvehaplotypeassemblyusinghypergraphmodel AT khanteymoorialireza achaoticviewpointbasedapproachtosolvehaplotypeassemblyusinghypergraphmodel AT khalifehkhosrow achaoticviewpointbasedapproachtosolvehaplotypeassemblyusinghypergraphmodel AT olyaeemohammadhossein chaoticviewpointbasedapproachtosolvehaplotypeassemblyusinghypergraphmodel AT khanteymoorialireza chaoticviewpointbasedapproachtosolvehaplotypeassemblyusinghypergraphmodel AT khalifehkhosrow chaoticviewpointbasedapproachtosolvehaplotypeassemblyusinghypergraphmodel |