Cargando…
Artificial intelligence that determines the clinical significance of capsule endoscopy images can increase the efficiency of reading
Artificial intelligence (AI), which has demonstrated outstanding achievements in image recognition, can be useful for the tedious capsule endoscopy (CE) reading. We aimed to develop a practical AI-based method that can identify various types of lesions and tried to evaluate the effectiveness of the...
Autores principales: | Park, Junseok, Hwang, Youngbae, Nam, Ji Hyung, Oh, Dong Jun, Kim, Ki Bae, Song, Hyun Joo, Kim, Su Hwan, Kang, Sun Hyung, Jung, Min Kyu, Jeong Lim, Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595411/ https://www.ncbi.nlm.nih.gov/pubmed/33119718 http://dx.doi.org/10.1371/journal.pone.0241474 |
Ejemplares similares
-
Application of Artificial Intelligence in Capsule Endoscopy: Where Are We Now?
por: Hwang, Youngbae, et al.
Publicado: (2018) -
Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy
por: Nam, Ji Hyung, et al.
Publicado: (2021) -
A Current and Newly Proposed Artificial Intelligence Algorithm for Reading Small Bowel Capsule Endoscopy
por: Oh, Dong Jun, et al.
Publicado: (2021) -
Small bowel cleanliness in capsule endoscopy: a case–control study using validated artificial intelligence algorithm
por: Oh, Dong Jun, et al.
Publicado: (2022) -
Efficacy of a comprehensive binary classification model using a deep convolutional neural network for wireless capsule endoscopy
por: Kim, Sang Hoon, et al.
Publicado: (2021)