Cargando…
Predicting antimicrobial resistance using conserved genes
A growing number of studies are using machine learning models to accurately predict antimicrobial resistance (AMR) phenotypes from bacterial sequence data. Although these studies are showing promise, the models are typically trained using features derived from comprehensive sets of AMR genes or whol...
Autores principales: | Nguyen, Marcus, Olson, Robert, Shukla, Maulik, VanOeffelen, Margo, Davis, James J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595632/ https://www.ncbi.nlm.nih.gov/pubmed/33075053 http://dx.doi.org/10.1371/journal.pcbi.1008319 |
Ejemplares similares
-
PATRIC as a unique resource for studying antimicrobial resistance
por: Antonopoulos, Dionysios A, et al.
Publicado: (2017) -
Antimicrobial Resistance Prediction in PATRIC and RAST
por: Davis, James J., et al.
Publicado: (2016) -
Predicting variable gene content in Escherichia coli using conserved genes
por: Nguyen, Marcus, et al.
Publicado: (2023) -
Predicting Antimicrobial Resistance Using Partial Genome Alignments
por: Aytan-Aktug, D., et al.
Publicado: (2021) -
Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumoniae
por: Nguyen, Marcus, et al.
Publicado: (2018)