Cargando…
The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks
Learning in neuronal networks has developed in many directions, in particular to reproduce cognitive tasks like image recognition and speech processing. Implementations have been inspired by stereotypical neuronal responses like tuning curves in the visual system, where, for example, ON/OFF cells fi...
Autores principales: | Gilson, Matthieu, Dahmen, David, Moreno-Bote, Rubén, Insabato, Andrea, Helias, Moritz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595646/ https://www.ncbi.nlm.nih.gov/pubmed/33044953 http://dx.doi.org/10.1371/journal.pcbi.1008127 |
Ejemplares similares
-
Human Activity Classification Using Multilayer Perceptron
por: Majidzadeh Gorjani, Ojan, et al.
Publicado: (2021) -
Recurrent network of perceptrons with three state synapses achieves competitive classification on real inputs
por: Amit, Yali, et al.
Publicado: (2012) -
Second type of criticality in the brain uncovers rich multiple-neuron dynamics
por: Dahmen, David, et al.
Publicado: (2019) -
Remote sensing tree classification with a multilayer perceptron
por: Sumsion, G Rex, et al.
Publicado: (2019) -
Multilayer perceptrons
por: Vang-Mata, Ruth
Publicado: (2020)