Cargando…

Podocytes maintain high basal levels of autophagy independent of mtor signaling

While constant basal levels of macroautophagy/autophagy are a prerequisite to preserve long-lived podocytes at the filtration barrier, MTOR regulates at the same time podocyte size and compensatory hypertrophy. Since MTOR is known to generally suppress autophagy, the apparently independent regulatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Bork, Tillmann, Liang, Wei, Yamahara, Kosuke, Lee, Philipp, Tian, Zhejia, Liu, Shuya, Schell, Christoph, Thedieck, Kathrin, Hartleben, Bjoern, Patel, Ketan, Tharaux, Pierre-Louis, Lenoir, Olivia, Huber, Tobias B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595647/
https://www.ncbi.nlm.nih.gov/pubmed/31865844
http://dx.doi.org/10.1080/15548627.2019.1705007
_version_ 1783601922921463808
author Bork, Tillmann
Liang, Wei
Yamahara, Kosuke
Lee, Philipp
Tian, Zhejia
Liu, Shuya
Schell, Christoph
Thedieck, Kathrin
Hartleben, Bjoern
Patel, Ketan
Tharaux, Pierre-Louis
Lenoir, Olivia
Huber, Tobias B.
author_facet Bork, Tillmann
Liang, Wei
Yamahara, Kosuke
Lee, Philipp
Tian, Zhejia
Liu, Shuya
Schell, Christoph
Thedieck, Kathrin
Hartleben, Bjoern
Patel, Ketan
Tharaux, Pierre-Louis
Lenoir, Olivia
Huber, Tobias B.
author_sort Bork, Tillmann
collection PubMed
description While constant basal levels of macroautophagy/autophagy are a prerequisite to preserve long-lived podocytes at the filtration barrier, MTOR regulates at the same time podocyte size and compensatory hypertrophy. Since MTOR is known to generally suppress autophagy, the apparently independent regulation of these two key pathways of glomerular maintenance remained puzzling. We now report that long-term genetic manipulation of MTOR activity does in fact not influence high basal levels of autophagy in podocytes either in vitro or in vivo. Instead we present data showing that autophagy in podocytes is mainly controlled by AMP-activated protein kinase (AMPK) and ULK1 (unc-51 like kinase 1). Pharmacological inhibition of MTOR further shows that the uncoupling of MTOR activity and autophagy is time dependent. Together, our data reveal a novel and unexpected cell-specific mechanism, which permits concurrent MTOR activity as well as high basal autophagy rates in podocytes. Thus, these data indicate manipulation of the AMPK-ULK1 axis rather than inhibition of MTOR as a promising therapeutic intervention to enhance autophagy and preserve podocyte homeostasis in glomerular diseases. Abbreviations: AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; ATG: autophagy related; BW: body weight; Cq: chloroquine; ER: endoplasmic reticulum; ESRD: end stage renal disease; FACS: fluorescence activated cell sorting; GFP: green fluorescent protein; i.p.: intra peritoneal; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NPHS1: nephrosis 1, nephrin; NPHS2: nephrosis 2, podocin; PLA: proximity-ligation assay; PRKAA: 5ʹ-AMP-activated protein kinase catalytic subunit alpha; RPTOR/RAPTOR: regulatory associated protein of MTOR, complex 1; RFP: red fluorescent protein; TSC1: tuberous sclerosis 1; ULK1: unc-51 like kinase 1
format Online
Article
Text
id pubmed-7595647
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-75956472020-11-10 Podocytes maintain high basal levels of autophagy independent of mtor signaling Bork, Tillmann Liang, Wei Yamahara, Kosuke Lee, Philipp Tian, Zhejia Liu, Shuya Schell, Christoph Thedieck, Kathrin Hartleben, Bjoern Patel, Ketan Tharaux, Pierre-Louis Lenoir, Olivia Huber, Tobias B. Autophagy Research Paper - Basic Science While constant basal levels of macroautophagy/autophagy are a prerequisite to preserve long-lived podocytes at the filtration barrier, MTOR regulates at the same time podocyte size and compensatory hypertrophy. Since MTOR is known to generally suppress autophagy, the apparently independent regulation of these two key pathways of glomerular maintenance remained puzzling. We now report that long-term genetic manipulation of MTOR activity does in fact not influence high basal levels of autophagy in podocytes either in vitro or in vivo. Instead we present data showing that autophagy in podocytes is mainly controlled by AMP-activated protein kinase (AMPK) and ULK1 (unc-51 like kinase 1). Pharmacological inhibition of MTOR further shows that the uncoupling of MTOR activity and autophagy is time dependent. Together, our data reveal a novel and unexpected cell-specific mechanism, which permits concurrent MTOR activity as well as high basal autophagy rates in podocytes. Thus, these data indicate manipulation of the AMPK-ULK1 axis rather than inhibition of MTOR as a promising therapeutic intervention to enhance autophagy and preserve podocyte homeostasis in glomerular diseases. Abbreviations: AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; ATG: autophagy related; BW: body weight; Cq: chloroquine; ER: endoplasmic reticulum; ESRD: end stage renal disease; FACS: fluorescence activated cell sorting; GFP: green fluorescent protein; i.p.: intra peritoneal; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NPHS1: nephrosis 1, nephrin; NPHS2: nephrosis 2, podocin; PLA: proximity-ligation assay; PRKAA: 5ʹ-AMP-activated protein kinase catalytic subunit alpha; RPTOR/RAPTOR: regulatory associated protein of MTOR, complex 1; RFP: red fluorescent protein; TSC1: tuberous sclerosis 1; ULK1: unc-51 like kinase 1 Taylor & Francis 2019-12-23 /pmc/articles/PMC7595647/ /pubmed/31865844 http://dx.doi.org/10.1080/15548627.2019.1705007 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
spellingShingle Research Paper - Basic Science
Bork, Tillmann
Liang, Wei
Yamahara, Kosuke
Lee, Philipp
Tian, Zhejia
Liu, Shuya
Schell, Christoph
Thedieck, Kathrin
Hartleben, Bjoern
Patel, Ketan
Tharaux, Pierre-Louis
Lenoir, Olivia
Huber, Tobias B.
Podocytes maintain high basal levels of autophagy independent of mtor signaling
title Podocytes maintain high basal levels of autophagy independent of mtor signaling
title_full Podocytes maintain high basal levels of autophagy independent of mtor signaling
title_fullStr Podocytes maintain high basal levels of autophagy independent of mtor signaling
title_full_unstemmed Podocytes maintain high basal levels of autophagy independent of mtor signaling
title_short Podocytes maintain high basal levels of autophagy independent of mtor signaling
title_sort podocytes maintain high basal levels of autophagy independent of mtor signaling
topic Research Paper - Basic Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595647/
https://www.ncbi.nlm.nih.gov/pubmed/31865844
http://dx.doi.org/10.1080/15548627.2019.1705007
work_keys_str_mv AT borktillmann podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT liangwei podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT yamaharakosuke podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT leephilipp podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT tianzhejia podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT liushuya podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT schellchristoph podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT thedieckkathrin podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT hartlebenbjoern podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT patelketan podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT tharauxpierrelouis podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT lenoirolivia podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling
AT hubertobiasb podocytesmaintainhighbasallevelsofautophagyindependentofmtorsignaling