Cargando…
Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images
BACKGROUND: Recent studies showed that immune-checkpoint blockade (ICB) has significantly improved clinical outcomes of melanoma and lung cancer patients. However, only a small subset of patients can benefit from ICB. Deep learning has been successfully implemented in complementary clinical diagnosi...
Autores principales: | Hu, Jing, Cui, Chuanliang, Yang, Wenxian, Huang, Lihong, Yu, Rongshan, Liu, Siyang, Kong, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595938/ https://www.ncbi.nlm.nih.gov/pubmed/33129113 http://dx.doi.org/10.1016/j.tranon.2020.100921 |
Ejemplares similares
-
Ratio of the interferon-γ signature to the immunosuppression signature predicts anti-PD-1 therapy response in melanoma
por: Cui, Chuanliang, et al.
Publicado: (2021) -
Multiplexed imaging mass cytometry reveals distinct tumor-immune microenvironments linked to immunotherapy responses in melanoma
por: Xiao, Xu, et al.
Publicado: (2022) -
A machine learning framework to determine geolocations from metagenomic profiling
por: Huang, Lihong, et al.
Publicado: (2020) -
Dice-XMBD: Deep Learning-Based Cell Segmentation for Imaging Mass Cytometry
por: Xiao, Xu, et al.
Publicado: (2021) -
Application of Deep Learning in Histopathology Images of Breast Cancer: A Review
por: Zhao, Yue, et al.
Publicado: (2022)