Cargando…
Construction of tantalum/poly(ether imide) coatings on magnesium implants with both corrosion protection and osseointegration properties
Poly(ether imide) (PEI) has shown satisfactory corrosion protection capability with good adhesion strength as a coating for magnesium (Mg), a potential candidate of biodegradable orthopedic implant material. However, its innate hydrophobic property causes insufficient osteoblast affinity and a lack...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595939/ https://www.ncbi.nlm.nih.gov/pubmed/33163700 http://dx.doi.org/10.1016/j.bioactmat.2020.10.007 |
Sumario: | Poly(ether imide) (PEI) has shown satisfactory corrosion protection capability with good adhesion strength as a coating for magnesium (Mg), a potential candidate of biodegradable orthopedic implant material. However, its innate hydrophobic property causes insufficient osteoblast affinity and a lack of osseointegration. Herein, we modify the physical and chemical properties of a PEI-coated Mg implant. A plasma immersion ion implantation technique is combined with direct current (DC) magnetron sputtering to introduce biologically compatible tantalum (Ta) onto the surface of the PEI coating. The PEI-coating layer is not damaged during this process owing to the extremely short processing time (30 s), retaining its high corrosion protection property and adhesion stability. The Ta-implanted layer (roughly 10-nm-thick) on the topmost PEI surface generates long-term surface hydrophilicity and favorable surface conditions for pre-osteoblasts to adhere, proliferate, and differentiate. Furthermore, in a rabbit femur study, the Ta/PEI-coated Mg implant demonstrates significantly enhanced bone tissue affinity and osseointegration capability. These results indicate that Ta/PEI-coated Mg is promising for achieving early mechanical fixation and long-term success in biodegradable orthopedic implant applications. |
---|