Cargando…
Predicting N-Strain Coexistence from Co-colonization Interactions: Epidemiology Meets Ecology and the Replicator Equation
Multi-type infection processes are ubiquitous in ecology, epidemiology and social systems, but remain hard to analyze and to understand on a fundamental level. Here, we study a multi-strain susceptible-infected-susceptible model with coinfection. A host already colonized by one strain can become mor...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595998/ https://www.ncbi.nlm.nih.gov/pubmed/33119836 http://dx.doi.org/10.1007/s11538-020-00816-w |
Sumario: | Multi-type infection processes are ubiquitous in ecology, epidemiology and social systems, but remain hard to analyze and to understand on a fundamental level. Here, we study a multi-strain susceptible-infected-susceptible model with coinfection. A host already colonized by one strain can become more or less vulnerable to co-colonization by a second strain, as a result of facilitating or competitive interactions between the two. Fitness differences between N strains are mediated through [Formula: see text] altered susceptibilities to secondary infection that depend on colonizer-cocolonizer identities ([Formula: see text] ). By assuming strain similarity in such pairwise traits, we derive a model reduction for the endemic system using separation of timescales. This ‘quasi-neutrality’ in trait space sets a fast timescale where all strains interact neutrally, and a slow timescale where selective dynamics unfold. We find that these slow dynamics are governed by the replicator equation for N strains. Our framework allows to build the community dynamics bottom-up from only pairwise invasion fitnesses between members. We highlight that mean fitness of the multi-strain network, changes with their individual dynamics, acts equally upon each type, and is a key indicator of system resistance to invasion. By uncovering the link between N-strain epidemiological coexistence and the replicator equation, we show that the ecology of co-colonization relates to Fisher’s fundamental theorem and to Lotka-Volterra systems. Besides efficient computation and complexity reduction for any system size, these results open new perspectives into high-dimensional community ecology, detection of species interactions, and evolution of biodiversity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s11538-020-00816-w) contains supplementary material, which is available to authorized users. |
---|