Cargando…
OSM-9 and OCR-2 TRPV channels are accessorial warm receptors in Caenorhabditis elegans temperature acclimatisation
Caenorhabditis elegans (C. elegans) exhibits cold tolerance and temperature acclimatisation regulated by a small number of head sensory neurons, such as the ADL temperature-sensing neurons that express three transient receptor potential vanilloid (TRPV) channel subunits, OSM-9, OCR-2, and OCR-1. Her...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596061/ https://www.ncbi.nlm.nih.gov/pubmed/33122746 http://dx.doi.org/10.1038/s41598-020-75302-3 |
Sumario: | Caenorhabditis elegans (C. elegans) exhibits cold tolerance and temperature acclimatisation regulated by a small number of head sensory neurons, such as the ADL temperature-sensing neurons that express three transient receptor potential vanilloid (TRPV) channel subunits, OSM-9, OCR-2, and OCR-1. Here, we show that an OSM-9/OCR-2 regulates temperature acclimatisation and acts as an accessorial warmth-sensing receptor in ADL neurons. Caenorhabditis elegans TRPV channel mutants showed abnormal temperature acclimatisation. Ectopic expression of OSM-9 and OCR-2 in non-warming-responsive gustatory neurons in C. elegans and Xenopus oocytes revealed that OSM-9 and OCR-2 cooperatively responded to warming; however, neither TRPV subunit alone was responsive to warming. A warming-induced OSM-9/OCR-2-mediated current was detectable in Xenopus oocytes, yet ADL in osm-9 ocr-2 double mutant responds to warming; therefore, an OSM-9/OCR-2 TRPV channel and as yet unidentified temperature receptor might coordinate transmission of temperature signalling in ADL temperature-sensing neurons. This study demonstrates direct sensation of warming by TRPV channels in C. elegans. |
---|