Cargando…
Evaluation of Multimodal Algorithms for the Segmentation of Multiparametric MRI Prostate Images
Prostate segmentation in multiparametric magnetic resonance imaging (mpMRI) can help to support prostate cancer diagnosis and therapy treatment. However, manual segmentation of the prostate is subjective and time-consuming. Many deep learning monomodal networks have been developed for automatic whol...
Autores principales: | Nai, Ying-Hwey, Teo, Bernice W., Tan, Nadya L., Chua, Koby Yi Wei, Wong, Chun Kit, O'Doherty, Sophie, Stephenson, Mary C., Schaefferkoetter, Josh, Thian, Yee Liang, Chiong, Edmund, Reilhac, Anthonin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596462/ https://www.ncbi.nlm.nih.gov/pubmed/33144873 http://dx.doi.org/10.1155/2020/8861035 |
Ejemplares similares
-
Improved amyloid burden quantification with nonspecific estimates using deep learning
por: Liu, Haohui, et al.
Publicado: (2021) -
Simulation and Validation in Brain Image Analysis
por: Tohka, Jussi, et al.
Publicado: (2016) -
Quantitative (18)F-fluorocholine positron emission tomography for prostate cancer: correlation between kinetic parameters and Gleason scoring
por: Schaefferkoetter, Joshua D., et al.
Publicado: (2017) -
Erratum to: Quantitative 18F-fluorocholine positron emission tomography for prostate cancer: correlation between kinetic parameters and Gleason scoring
por: Schaefferkoetter, Joshua D., et al.
Publicado: (2017) -
Quantitative multimodal multiparametric imaging in Alzheimer’s disease
por: Zhao, Qian, et al.
Publicado: (2016)