Cargando…
A general-purpose machine-learning force field for bulk and nanostructured phosphorus
Elemental phosphorus is attracting growing interest across fundamental and applied fields of research. However, atomistic simulations of phosphorus have remained an outstanding challenge. Here, we show that a universally applicable force field for phosphorus can be created by machine learning (ML) f...
Autores principales: | Deringer, Volker L., Caro, Miguel A., Csányi, Gábor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596484/ https://www.ncbi.nlm.nih.gov/pubmed/33122630 http://dx.doi.org/10.1038/s41467-020-19168-z |
Ejemplares similares
-
Reactivity of Amorphous Carbon Surfaces: Rationalizing
the Role of Structural Motifs in Functionalization Using Machine Learning
por: Caro, Miguel A., et al.
Publicado: (2018) -
Quantifying Chemical Structure and Machine‐Learned Atomic Energies in Amorphous and Liquid Silicon
por: Bernstein, Noam, et al.
Publicado: (2019) -
A transferable active-learning strategy for reactive molecular force fields
por: Young, Tom A., et al.
Publicado: (2021) -
Extracting Crystal Chemistry from Amorphous Carbon Structures
por: Deringer, Volker L., et al.
Publicado: (2017) -
Host Dynamics under General-Purpose Force Fields
por: Wang, Xiaohui, et al.
Publicado: (2023)