Cargando…

Ultra-fast kinematic vortices in mesoscopic superconductors: the effect of the self-field

Within the framework of the generalized time-dependent Ginzburg–Landau equations, we studied the influence of the magnetic self-field induced by the currents inside a superconducting sample driven by an applied transport current. The numerical simulations of the resistive state of the system show th...

Descripción completa

Detalles Bibliográficos
Autores principales: Cadorim, Leonardo Rodrigues, de Oliveira Junior, Alexssandre, Sardella, Edson
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596518/
https://www.ncbi.nlm.nih.gov/pubmed/33122791
http://dx.doi.org/10.1038/s41598-020-75748-5
Descripción
Sumario:Within the framework of the generalized time-dependent Ginzburg–Landau equations, we studied the influence of the magnetic self-field induced by the currents inside a superconducting sample driven by an applied transport current. The numerical simulations of the resistive state of the system show that neither material inhomogeneity nor a normal contact smaller than the sample width are required to produce an inhomogeneous current distribution inside the sample, which leads to the emergence of a kinematic vortex–antivortex pair (vortex street) solution. Further, we discuss the behaviors of the kinematic vortex velocity, the annihilation rates of the supercurrent, and the superconducting order parameters alongside the vortex street solution. We prove that these two latter points explain the characteristics of the resistive state of the system. They are the fundamental basis to describe the peak of the current–resistance characteristic curve and the location where the vortex–antivortex pair is formed.