Cargando…
Color image encryption based on chaotic compressed sensing and two-dimensional fractional Fourier transform
Combining the advantages of structured random measurement matrix and chaotic structure, this paper introduces a color image encryption algorithm based on a structural chaotic measurement matrix and random phase mask. The Chebyshev chaotic sequence is used in the algorithm to generate the flip permut...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596547/ https://www.ncbi.nlm.nih.gov/pubmed/33122730 http://dx.doi.org/10.1038/s41598-020-75562-z |
Sumario: | Combining the advantages of structured random measurement matrix and chaotic structure, this paper introduces a color image encryption algorithm based on a structural chaotic measurement matrix and random phase mask. The Chebyshev chaotic sequence is used in the algorithm to generate the flip permutation matrix, the sampling subset and the chaotic cyclic matrix for constructing the structure perceptual matrix and the random phase mask. The original image is compressed and encrypted simultaneously by compressed sensing, and re-encrypted by two-dimensional fractional Fourier transform. Simulation experiments show the effectiveness and reliability of the algorithm. |
---|