Cargando…
Graphene memristive synapses for high precision neuromorphic computing
Memristive crossbar architectures are evolving as powerful in-memory computing engines for artificial neural networks. However, the limited number of non-volatile conductance states offered by state-of-the-art memristors is a concern for their hardware implementation since trained weights must be ro...
Autores principales: | Schranghamer, Thomas F., Oberoi, Aaryan, Das, Saptarshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596564/ https://www.ncbi.nlm.nih.gov/pubmed/33122647 http://dx.doi.org/10.1038/s41467-020-19203-z |
Ejemplares similares
-
Neuromorphic computing with multi-memristive synapses
por: Boybat, Irem, et al.
Publicado: (2018) -
Memristive Artificial Synapses for Neuromorphic Computing
por: Huang, Wen, et al.
Publicado: (2021) -
Memristive and CMOS Devices for Neuromorphic Computing
por: Milo, Valerio, et al.
Publicado: (2020) -
Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning
por: Mou, Xing, et al.
Publicado: (2021) -
Emerging memristive neurons for neuromorphic computing and sensing
por: Li, Zhiyuan, et al.
Publicado: (2023)