Cargando…
Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning
BACKGROUND: Identifying genetic mutations in cancer patients have been increasingly important because distinctive mutational patterns can be very informative to determine the optimal therapeutic strategy. Recent studies have shown that deep learning-based molecular cancer subtyping can be performed...
Autores principales: | Jang, Hyun-Jong, Lee, Ahwon, Kang, J, Song, In Hye, Lee, Sung Hak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596644/ https://www.ncbi.nlm.nih.gov/pubmed/33177794 http://dx.doi.org/10.3748/wjg.v26.i40.6207 |
Ejemplares similares
-
Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach
por: Jang, Hyun-Jong, et al.
Publicado: (2021) -
Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images
por: Jang, Hyun-Jong, et al.
Publicado: (2021) -
Enhancing the landscape of colorectal cancer using targeted deep sequencing
por: Lee, Chul Seung, et al.
Publicado: (2021) -
Deep Learning-Based Classification of Uterine Cervical and Endometrial Cancer Subtypes from Whole-Slide Histopathology Images
por: Song, JaeYen, et al.
Publicado: (2022) -
Deep Learning for the Pathologic Diagnosis of Hepatocellular Carcinoma, Cholangiocarcinoma, and Metastatic Colorectal Cancer
por: Jang, Hyun-Jong, et al.
Publicado: (2023)