Cargando…
Multiple imputation for analysis of incomplete data in distributed health data networks
Distributed health data networks (DHDNs) leverage data from multiple sources or sites such as electronic health records (EHRs) from multiple healthcare systems and have drawn increasing interests in recent years, as they do not require sharing of subject-level data and hence lower the hurdles for co...
Autores principales: | Chang, Changgee, Deng, Yi, Jiang, Xiaoqian, Long, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596726/ https://www.ncbi.nlm.nih.gov/pubmed/33122624 http://dx.doi.org/10.1038/s41467-020-19270-2 |
Ejemplares similares
-
Multiple Imputation for General Missing Data Patterns in the Presence of High-dimensional Data
por: Deng, Yi, et al.
Publicado: (2016) -
Multiple imputation and analysis for high‐dimensional incomplete proteomics data
por: Yin, Xiaoyan, et al.
Publicado: (2015) -
Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
por: Wahl, Simone, et al.
Publicado: (2016) -
Practical considerations for sensitivity analysis after multiple imputation applied to epidemiological studies with incomplete data
por: Héraud-Bousquet, Vanina, et al.
Publicado: (2012) -
Erratum to: Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
por: Wahl, Simone, et al.
Publicado: (2016)