Cargando…

Probing Charge Accumulation at SrMnO(3)/SrTiO(3) Heterointerfaces via Advanced Electron Microscopy and Spectroscopy

[Image: see text] The last three decades have seen a growing trend toward studying the interfacial phenomena in complex oxide heterostructures. Of particular concern is the charge distribution at interfaces, which is a crucial factor in controlling the interface transport behavior. However, the stud...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hongguang, Srot, Vesna, Jiang, Xijie, Yi, Min, Wang, Yi, Boschker, Hans, Merkle, Rotraut, Stark, Robert W., Mannhart, Jochen, van Aken, Peter A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596774/
https://www.ncbi.nlm.nih.gov/pubmed/32910642
http://dx.doi.org/10.1021/acsnano.0c01545
_version_ 1783602183334264832
author Wang, Hongguang
Srot, Vesna
Jiang, Xijie
Yi, Min
Wang, Yi
Boschker, Hans
Merkle, Rotraut
Stark, Robert W.
Mannhart, Jochen
van Aken, Peter A.
author_facet Wang, Hongguang
Srot, Vesna
Jiang, Xijie
Yi, Min
Wang, Yi
Boschker, Hans
Merkle, Rotraut
Stark, Robert W.
Mannhart, Jochen
van Aken, Peter A.
author_sort Wang, Hongguang
collection PubMed
description [Image: see text] The last three decades have seen a growing trend toward studying the interfacial phenomena in complex oxide heterostructures. Of particular concern is the charge distribution at interfaces, which is a crucial factor in controlling the interface transport behavior. However, the study of the charge distribution is very challenging due to its small length scale and the intricate structure and chemistry at interfaces. Furthermore, the underlying origin of the interfacial charge distribution has been rarely studied in-depth and is still poorly understood. Here, by a combination of aberration-corrected scanning transmission electron microscopy (STEM) and spectroscopy techniques, we identify the charge accumulation in the SrMnO(3) (SMO) side of SrMnO(3)/SrTiO(3) heterointerfaces and find that the charge density attains the maximum of 0.13 ± 0.07 e(–)/unit cell (uc) at the first SMO monolayer. Based on quantitative atomic-scale STEM analyses and first-principle calculations, we explore the origin of interfacial charge accumulation in terms of epitaxial strain-favored oxygen vacancies, cationic interdiffusion, interfacial charge transfer, and space-charge effects. This study, therefore, provides a comprehensive description of the charge distribution and related mechanisms at the SMO/STO heterointerfaces, which is beneficial for the functionality manipulation via charge engineering at interfaces.
format Online
Article
Text
id pubmed-7596774
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-75967742020-10-30 Probing Charge Accumulation at SrMnO(3)/SrTiO(3) Heterointerfaces via Advanced Electron Microscopy and Spectroscopy Wang, Hongguang Srot, Vesna Jiang, Xijie Yi, Min Wang, Yi Boschker, Hans Merkle, Rotraut Stark, Robert W. Mannhart, Jochen van Aken, Peter A. ACS Nano [Image: see text] The last three decades have seen a growing trend toward studying the interfacial phenomena in complex oxide heterostructures. Of particular concern is the charge distribution at interfaces, which is a crucial factor in controlling the interface transport behavior. However, the study of the charge distribution is very challenging due to its small length scale and the intricate structure and chemistry at interfaces. Furthermore, the underlying origin of the interfacial charge distribution has been rarely studied in-depth and is still poorly understood. Here, by a combination of aberration-corrected scanning transmission electron microscopy (STEM) and spectroscopy techniques, we identify the charge accumulation in the SrMnO(3) (SMO) side of SrMnO(3)/SrTiO(3) heterointerfaces and find that the charge density attains the maximum of 0.13 ± 0.07 e(–)/unit cell (uc) at the first SMO monolayer. Based on quantitative atomic-scale STEM analyses and first-principle calculations, we explore the origin of interfacial charge accumulation in terms of epitaxial strain-favored oxygen vacancies, cationic interdiffusion, interfacial charge transfer, and space-charge effects. This study, therefore, provides a comprehensive description of the charge distribution and related mechanisms at the SMO/STO heterointerfaces, which is beneficial for the functionality manipulation via charge engineering at interfaces. American Chemical Society 2020-09-10 2020-10-27 /pmc/articles/PMC7596774/ /pubmed/32910642 http://dx.doi.org/10.1021/acsnano.0c01545 Text en This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Wang, Hongguang
Srot, Vesna
Jiang, Xijie
Yi, Min
Wang, Yi
Boschker, Hans
Merkle, Rotraut
Stark, Robert W.
Mannhart, Jochen
van Aken, Peter A.
Probing Charge Accumulation at SrMnO(3)/SrTiO(3) Heterointerfaces via Advanced Electron Microscopy and Spectroscopy
title Probing Charge Accumulation at SrMnO(3)/SrTiO(3) Heterointerfaces via Advanced Electron Microscopy and Spectroscopy
title_full Probing Charge Accumulation at SrMnO(3)/SrTiO(3) Heterointerfaces via Advanced Electron Microscopy and Spectroscopy
title_fullStr Probing Charge Accumulation at SrMnO(3)/SrTiO(3) Heterointerfaces via Advanced Electron Microscopy and Spectroscopy
title_full_unstemmed Probing Charge Accumulation at SrMnO(3)/SrTiO(3) Heterointerfaces via Advanced Electron Microscopy and Spectroscopy
title_short Probing Charge Accumulation at SrMnO(3)/SrTiO(3) Heterointerfaces via Advanced Electron Microscopy and Spectroscopy
title_sort probing charge accumulation at srmno(3)/srtio(3) heterointerfaces via advanced electron microscopy and spectroscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596774/
https://www.ncbi.nlm.nih.gov/pubmed/32910642
http://dx.doi.org/10.1021/acsnano.0c01545
work_keys_str_mv AT wanghongguang probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy
AT srotvesna probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy
AT jiangxijie probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy
AT yimin probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy
AT wangyi probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy
AT boschkerhans probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy
AT merklerotraut probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy
AT starkrobertw probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy
AT mannhartjochen probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy
AT vanakenpetera probingchargeaccumulationatsrmno3srtio3heterointerfacesviaadvancedelectronmicroscopyandspectroscopy