Cargando…
Prediction of single-cell gene expression for transcription factor analysis
BACKGROUND: Single-cell RNA sequencing is a powerful technology to discover new cell types and study biological processes in complex biological samples. A current challenge is to predict transcription factor (TF) regulation from single-cell RNA data. RESULTS: Here, we propose a novel approach for pr...
Autores principales: | Behjati Ardakani, Fatemeh, Kattler, Kathrin, Heinen, Tobias, Schmidt, Florian, Feuerborn, David, Gasparoni, Gilles, Lepikhov, Konstantin, Nell, Patrick, Hengstler, Jan, Walter, Jörn, Schulz, Marcel H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596801/ https://www.ncbi.nlm.nih.gov/pubmed/33124660 http://dx.doi.org/10.1093/gigascience/giaa113 |
Ejemplares similares
-
CpG content-dependent associations between transcription factors and histone modifications
por: Fischer, Jonas, et al.
Publicado: (2021) -
Predicting transcription factor binding using ensemble random forest models
por: Behjati Ardakani, Fatemeh, et al.
Publicado: (2019) -
Integrative analysis of single-cell expression data reveals distinct regulatory states in bidirectional promoters
por: Behjati Ardakani, Fatemeh, et al.
Publicado: (2018) -
Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
por: Schmidt, Florian, et al.
Publicado: (2017) -
Unique and assay specific features of NOMe-, ATAC- and DNase I-seq data
por: Nordström, Karl J V, et al.
Publicado: (2019)