Cargando…
An Intelligent EEG Classification Methodology Based on Sparse Representation Enhanced Deep Learning Networks
The classification of electroencephalogram (EEG) signals is of significant importance in brain–computer interface (BCI) systems. Aiming to achieve intelligent classification of EEG types with high accuracy, a classification methodology using sparse representation (SR) and fast compression residual c...
Autores principales: | Huang, Jing-Shan, Li, Yang, Chen, Bin-Qiang, Lin, Chuang, Yao, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596898/ https://www.ncbi.nlm.nih.gov/pubmed/33177970 http://dx.doi.org/10.3389/fnins.2020.00808 |
Ejemplares similares
-
Automatic Seizure Classification Based on Domain-Invariant Deep Representation of EEG
por: Cao, Xincheng, et al.
Publicado: (2021) -
Sparse measures with swarm-based pliable hidden Markov model and deep learning for EEG classification
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2022) -
Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks
por: Chai, Rifai, et al.
Publicado: (2017) -
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
por: Liu, Junxiu, et al.
Publicado: (2020) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018)