Cargando…

A non-linear optimisation method to extract summary statistics from Kaplan-Meier survival plots using the published P value

BACKGROUND: Meta-analyses of studies evaluating survival (time-to-event) outcomes are a powerful technique to assess the strength of evidence for a given disease or treatment. However, these studies rely on the adequate reporting of summary statistics in the source articles to facilitate further ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Irvine, Andrew F., Waise, Sara, Green, Edward W., Stuart, Beth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596943/
https://www.ncbi.nlm.nih.gov/pubmed/33126853
http://dx.doi.org/10.1186/s12874-020-01092-x
Descripción
Sumario:BACKGROUND: Meta-analyses of studies evaluating survival (time-to-event) outcomes are a powerful technique to assess the strength of evidence for a given disease or treatment. However, these studies rely on the adequate reporting of summary statistics in the source articles to facilitate further analysis. Unfortunately, many studies, especially within the field of prognostic research do not report such statistics, making secondary analyses challenging. Consequently, methods have been developed to infer missing statistics from the commonly published Kaplan-Meier (KM) plots but are liable to error especially when the published number at risk is not included. METHODS: We therefore developed a method using non-linear optimisation (nlopt) that only requires the KM plot and the commonly published P value to better estimate the underlying censoring pattern. We use this information to then calculate the natural logarithm of the hazard ratio (ln (HR)) and its variance (var) ln (HR), statistics important for meta-analyses. RESULTS: We compared this method to the Parmar method which also does not require the number at risk to be published. In a validation set consisting of 13 KM studies, a statistically significant improvement in calculating ln (HR) when using an exact P value was obtained (mean absolute error 0.014 vs 0.077, P = 0.003). Thus, when the true HR has a value of 1.5, inference of the HR using the proposed method would set limits between 1.49/1.52, an improvement of the 1.39/1.62 limits obtained using the Parmar method. We also used Monte Carlo simulations to establish recommendations for the number and positioning of points required for the method. CONCLUSION: The proposed non-linear optimisation method is an improvement on the existing method when only a KM plot and P value are included and as such will enhance the accuracy of meta-analyses performed for studies analysing time-to-event outcomes. The nlopt source code is available, as is a simple-to-use web implementation of the method.