Cargando…
Feature selection algorithm based on dual correlation filters for cancer-associated somatic variants
BACKGROUND: Since the development of sequencing technology, an enormous amount of genetic information has been generated, and human cancer analysis using this information is drawing attention. As the effects of variants on human cancer become known, it is important to find cancer-associated variants...
Autores principales: | Seo, Hyein, Cho, Dong-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7596964/ https://www.ncbi.nlm.nih.gov/pubmed/33121438 http://dx.doi.org/10.1186/s12859-020-03767-0 |
Ejemplares similares
-
VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering
por: Gézsi, András, et al.
Publicado: (2015) -
McTwo: a two-step feature selection algorithm based on maximal information coefficient
por: Ge, Ruiquan, et al.
Publicado: (2016) -
Cost-Constrained feature selection in binary classification: adaptations for greedy forward selection and genetic algorithms
por: Jagdhuber, Rudolf, et al.
Publicado: (2020) -
Early selection of carrot somatic hybrids: a promising tool for species with high regenerative ability
por: Mackowska, Katarzyna, et al.
Publicado: (2023) -
Supervised Classification by Filter Methods and Recursive Feature Elimination Predicts Risk of Radiotherapy-Related Fatigue in Patients with Prostate Cancer
por: Saligan, Leorey N, et al.
Publicado: (2014)