Cargando…
NBZIMM: negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis
BACKGROUND: Microbiome/metagenomic data have specific characteristics, including varying total sequence reads, over-dispersion, and zero-inflation, which require tailored analytic tools. Many microbiome/metagenomic studies follow a longitudinal design to collect samples, which further complicates th...
Autores principales: | Zhang, Xinyan, Yi, Nengjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597071/ https://www.ncbi.nlm.nih.gov/pubmed/33126862 http://dx.doi.org/10.1186/s12859-020-03803-z |
Ejemplares similares
-
Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data
por: Zhang, Xinyan, et al.
Publicado: (2020) -
Negative binomial mixed models for analyzing microbiome count data
por: Zhang, Xinyan, et al.
Publicado: (2017) -
Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data
por: Zhang, Xinyan, et al.
Publicado: (2018) -
Evaluation of negative binomial and zero-inflated negative binomial models for the analysis of zero-inflated count data: application to the telemedicine for children with medical complexity trial
por: Lee, Kyung Hyun, et al.
Publicado: (2023) -
Zero inflated Poisson and negative binomial regression models: application in education
por: Salehi, Masoud, et al.
Publicado: (2015)