Cargando…
Clinical Value of Information Entropy Compared with Deep Learning for Ultrasound Grading of Hepatic Steatosis
Entropy is a quantitative measure of signal uncertainty and has been widely applied to ultrasound tissue characterization. Ultrasound assessment of hepatic steatosis typically involves a backscattered statistical analysis of signals based on information entropy. Deep learning extracts features for c...
Autores principales: | Chen, Jheng-Ru, Chao, Yi-Ping, Tsai, Yu-Wei, Chan, Hsien-Jung, Wan, Yung-Liang, Tai, Dar-In, Tsui, Po-Hsiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597079/ https://www.ncbi.nlm.nih.gov/pubmed/33286775 http://dx.doi.org/10.3390/e22091006 |
Ejemplares similares
-
Ultrasound Assessment of Hepatic Steatosis by Using the Double Nakagami Distribution: A Feasibility Study
por: Fang, Feng, et al.
Publicado: (2020) -
Performance Evaluations on Using Entropy of Ultrasound Log-Compressed Envelope Images for Hepatic Steatosis Assessment: An In Vivo Animal Study
por: Fang, Jui, et al.
Publicado: (2018) -
Quantitative imaging of ultrasound backscattered signals with information entropy for bone microstructure characterization
por: Wang, Chiao-Yin, et al.
Publicado: (2022) -
Imaging the Effects of Whole-Body Vibration on the Progression of Hepatic Steatosis by Quantitative Ultrasound Based on Backscatter Envelope Statistics
por: Fang, Jui, et al.
Publicado: (2022) -
Steatosis Quantification on Ultrasound Images by a Deep Learning Algorithm on Patients Undergoing Weight Changes
por: Harrison, Adam P., et al.
Publicado: (2023)