Cargando…
Regularization Methods Based on the L(q)-Likelihood for Linear Models with Heavy-Tailed Errors
We propose regularization methods for linear models based on the [Formula: see text]-likelihood, which is a generalization of the log-likelihood using a power function. Regularization methods are popular for the estimation in the normal linear model. However, heavy-tailed errors are also important i...
Autor principal: | Hirose, Yoshihiro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597096/ https://www.ncbi.nlm.nih.gov/pubmed/33286805 http://dx.doi.org/10.3390/e22091036 |
Ejemplares similares
-
An improved error-analysis of the maximum likelihood method
por: Niessner, H
Publicado: (1966) -
Minimax Rates of ℓ(p)-Losses for High-Dimensional Linear Errors-in-Variables Models over ℓ(q)-Balls
por: Li, Xin, et al.
Publicado: (2021) -
Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error
por: Jäntschi, Lorentz, et al.
Publicado: (2016) -
Fast Estimation of L1-Regularized Linear Models in the Mass-Univariate Setting
por: Mohr, Holger, et al.
Publicado: (2020) -
An Empirical Likelihood Method for Semiparametric Linear Regression with Right Censored Data
por: Fang, Kai-Tai, et al.
Publicado: (2013)